procedural-3d-engine/texturecubemap/texturecubemap.cpp

808 lines
26 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Vulkan Example - Cube map texture loading and displaying
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <gli/gli.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
//#define USE_GLSL
#define ENABLE_VALIDATION false
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_UV
};
class VulkanExample : public VulkanExampleBase
{
public:
vkTools::VulkanTexture cubeMap;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer skybox, object;
} meshes;
struct {
vkTools::UniformData objectVS;
vkTools::UniformData skyboxVS;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVS;
struct {
VkPipeline skybox;
VkPipeline reflect;
} pipelines;
struct {
VkDescriptorSet object;
VkDescriptorSet skybox;
} descriptorSets;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -4.0f;
rotationSpeed = 0.25f;
rotation = { -2.25f, -35.0f, 0.0f };
title = "Vulkan Example - Cube map";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Clean up texture resources
vkDestroyImageView(device, cubeMap.view, nullptr);
vkDestroyImage(device, cubeMap.image, nullptr);
vkDestroySampler(device, cubeMap.sampler, nullptr);
vkFreeMemory(device, cubeMap.deviceMemory, nullptr);
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipeline(device, pipelines.reflect, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.object);
vkMeshLoader::freeMeshBufferResources(device, &meshes.skybox);
vkTools::destroyUniformData(device, &uniformData.objectVS);
vkTools::destroyUniformData(device, &uniformData.skyboxVS);
}
void loadTexture(const char* filename, VkFormat format, bool forceLinearTiling)
{
VkFormatProperties formatProperties;
VkResult err;
gli::textureCube texCube(gli::load(filename));
assert(!texCube.empty());
cubeMap.width = texCube[0].dimensions().x;
cubeMap.height = texCube[0].dimensions().y;
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { cubeMap.width, cubeMap.height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
struct {
VkImage image;
VkDeviceMemory memory;
} cubeFace[6];
// Allocate command buffer for image copies and layouts
VkCommandBuffer cmdBuffer;
VkCommandBufferAllocateInfo cmdBufAlllocatInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
err = vkAllocateCommandBuffers(device, &cmdBufAlllocatInfo, &cmdBuffer);
assert(!err);
VkCommandBufferBeginInfo cmdBufInfo =
vkTools::initializers::commandBufferBeginInfo();
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo);
assert(!err);
// Load separate cube map faces into linear tiled textures
for (uint32_t face = 0; face < 6; ++face)
{
err = vkCreateImage(device, &imageCreateInfo, nullptr, &cubeFace[face].image);
assert(!err);
vkGetImageMemoryRequirements(device, cubeFace[face].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeFace[face].memory);
assert(!err);
err = vkBindImageMemory(device, cubeFace[face].image, cubeFace[face].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, cubeFace[face].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, cubeFace[face].memory, 0, memReqs.size, 0, &data);
assert(!err);
memcpy(data, texCube[face][subRes.mipLevel].data(), texCube[face][subRes.mipLevel].size());
vkUnmapMemory(device, cubeFace[face].memory);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
vkTools::setImageLayout(
cmdBuffer,
cubeFace[face].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Transfer cube map faces to optimal tiling
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
imageCreateInfo.arrayLayers = 6;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &cubeMap.image);
assert(!err);
vkGetImageMemoryRequirements(device, cubeMap.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeMap.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, cubeMap.image, cubeMap.deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vkTools::setImageLayout(
cmdBuffer,
cubeMap.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy cube map faces one by one
for (uint32_t face = 0; face < 6; ++face)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = face;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = cubeMap.width;
copyRegion.extent.height = cubeMap.height;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
cmdBuffer,
cubeFace[face].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
cubeMap.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
cubeMap.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
cmdBuffer,
cubeMap.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
cubeMap.imageLayout);
}
err = vkEndCommandBuffer(cmdBuffer);
assert(!err);
VkFence nullFence = { VK_NULL_HANDLE };
// Submit command buffer to graphis queue
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, nullFence);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 8;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &cubeMap.sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6;
view.image = cubeMap.image;
err = vkCreateImageView(device, &view, nullptr, &cubeMap.view);
assert(!err);
// Cleanup
for (auto& face : cubeFace)
{
vkDestroyImage(device, face.image, nullptr);
vkFreeMemory(device, face.memory, nullptr);
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Skybox
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skybox.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skybox.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skybox.indexCount, 1, 0, 0, 0);
// 3D object
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.object.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.object.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.object.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
2016-02-16 15:07:25 +01:00
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
assert(!err);
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer);
assert(!err);
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit draw command buffer
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = swapChain.queuePresent(queue, currentBuffer);
assert(!err);
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void loadMeshes()
{
loadMesh("./../data/models/sphere.obj", &meshes.object, vertexLayout, 0.05f);
loadMesh("./../data/models/cube.obj", &meshes.skybox, vertexLayout, 0.05f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 5);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSets()
{
// Image descriptor for the cube map texture
VkDescriptorImageInfo cubeMapDescriptor =
vkTools::initializers::descriptorImageInfo(
cubeMap.sampler,
cubeMap.view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
// 3D object descriptor set
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.object,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.objectVS.descriptor),
// Binding 1 : Fragment shader cubemap sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.object,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&cubeMapDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Sky box descriptor set
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox);
assert(!vkRes);
writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.skybox,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.skyboxVS.descriptor),
// Binding 1 : Fragment shader cubemap sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.skybox,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&cubeMapDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_FALSE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Skybox pipeline (background cube)
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/cubemap/skybox.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/cubemap/skybox.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/cubemap/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/cubemap/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox);
assert(!err);
// Cube map reflect pipeline
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/cubemap/reflect.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/cubemap/reflect.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/cubemap/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/cubemap/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
depthStencilState.depthWriteEnable = VK_TRUE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.reflect);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// 3D objact
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.objectVS.buffer,
&uniformData.objectVS.memory,
&uniformData.objectVS.descriptor);
// Skybox
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.skyboxVS.buffer,
&uniformData.skyboxVS.memory,
&uniformData.skyboxVS.descriptor);
}
void updateUniformBuffers()
{
// 3D object
glm::mat4 viewMatrix = glm::mat4();
uboVS.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.001f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
uboVS.model = glm::mat4();
uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0));
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.objectVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.objectVS.memory);
// Skysphere
viewMatrix = glm::mat4();
uboVS.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.001f, 256.0f);
uboVS.model = glm::mat4();
uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0));
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
err = vkMapMemory(device, uniformData.skyboxVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.skyboxVS.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadMeshes();
setupVertexDescriptions();
prepareUniformBuffers();
loadTexture(
"./../data/textures/cubemap_yokohama.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
false);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
updateUniformBuffers();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}