procedural-3d-engine/shaders/slang/deferredmultisampling/deferred.slang

140 lines
3.6 KiB
Text
Raw Normal View History

/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
[[vk::binding(1, 0)]] Texture2DMS samplerPosition;
[[vk::binding(2, 0)]] Texture2DMS samplerNormal;
[[vk::binding(3, 0)]] Texture2DMS samplerAlbedo;
struct Light {
float4 position;
float3 color;
float radius;
};
struct UBO
{
Light lights[6];
float4 viewPos;
int displayDebugTarget;
};
[[vk::binding(4, 0)]] ConstantBuffer<UBO> ubo;
struct VSOutput
{
float4 Pos : SV_POSITION;
float2 UV;
};
[[SpecializationConstant]] const int NUM_SAMPLES = 8;
#define NUM_LIGHTS 6
// Manual resolve for MSAA samples
float4 resolve(Texture2DMS<float4> tex, int2 uv)
{
float4 result = float4(0.0, 0.0, 0.0, 0.0);
for (int i = 0; i < NUM_SAMPLES; i++)
{
uint status = 0;
float4 val = tex.Load(uv, i, int2(0, 0), status);
result += val;
}
// Average resolved samples
return result / float(NUM_SAMPLES);
}
float3 calculateLighting(float3 pos, float3 normal, float4 albedo)
{
float3 result = float3(0.0, 0.0, 0.0);
for (int i = 0; i < NUM_LIGHTS; ++i)
{
// Vector to light
float3 L = ubo.lights[i].position.xyz - pos;
// Distance from light to fragment position
float dist = length(L);
// Viewer to fragment
float3 V = ubo.viewPos.xyz - pos;
V = normalize(V);
// Light to fragment
L = normalize(L);
// Attenuation
float atten = ubo.lights[i].radius / (pow(dist, 2.0) + 1.0);
// Diffuse part
float3 N = normalize(normal);
float NdotL = max(0.0, dot(N, L));
float3 diff = ubo.lights[i].color * albedo.rgb * NdotL * atten;
// Specular part
float3 R = reflect(-L, N);
float NdotR = max(0.0, dot(R, V));
float3 spec = ubo.lights[i].color * albedo.a * pow(NdotR, 8.0) * atten;
result += diff + spec;
}
return result;
}
[shader("vertex")]
VSOutput vertexMain(uint VertexIndex: SV_VertexID)
{
VSOutput output;
output.UV = float2((VertexIndex << 1) & 2, VertexIndex & 2);
output.Pos = float4(output.UV * 2.0f - 1.0f, 0.0f, 1.0f);
return output;
}
[shader("fragment")]
float4 fragmentMain(VSOutput input)
{
int2 attDim; int sampleCount;
samplerPosition.GetDimensions(attDim.x, attDim.y, sampleCount);
int2 UV = int2(input.UV * attDim);
float3 fragColor;
uint status = 0;
// Debug display
if (ubo.displayDebugTarget > 0) {
switch (ubo.displayDebugTarget) {
case 1:
fragColor.rgb = samplerPosition.Load(UV, 0, int2(0, 0), status).rgb;
break;
case 2:
fragColor.rgb = samplerNormal.Load(UV, 0, int2(0, 0), status).rgb;
break;
case 3:
fragColor.rgb = samplerAlbedo.Load(UV, 0, int2(0, 0), status).rgb;
break;
case 4:
fragColor.rgb = samplerAlbedo.Load(UV, 0, int2(0, 0), status).aaa;
break;
}
return float4(fragColor, 1.0);
}
#define ambient 0.15
// Ambient part
float4 alb = resolve(samplerAlbedo, UV);
fragColor = float3(0.0, 0.0, 0.0);
// Calualte lighting for every MSAA sample
for (int i = 0; i < NUM_SAMPLES; i++)
{
float3 pos = samplerPosition.Load(UV, i, int2(0, 0), status).rgb;
float3 normal = samplerNormal.Load(UV, i, int2(0, 0), status).rgb;
float4 albedo = samplerAlbedo.Load(UV, i, int2(0, 0), status);
fragColor += calculateLighting(pos, normal, albedo);
}
fragColor = (alb.rgb * ambient) + fragColor / float(NUM_SAMPLES);
return float4(fragColor, 1.0);
}