procedural-3d-engine/base/vulkanMeshLoader.hpp

402 lines
12 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Simple wrapper for getting an index buffer and vertices out of an assimp mesh
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <stdlib.h>
#include <string>
#include <fstream>
#include <assert.h>
#include <stdio.h>
#include <vector>
#include <map>
#ifdef _WIN32
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#endif
#include "vulkan/vulkan.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <assimp/cimport.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
namespace vkMeshLoader
{
typedef enum VertexLayout {
VERTEX_LAYOUT_POSITION = 0x0,
VERTEX_LAYOUT_NORMAL = 0x1,
VERTEX_LAYOUT_COLOR = 0x2,
VERTEX_LAYOUT_UV = 0x3,
VERTEX_LAYOUT_TANGENT = 0x4,
VERTEX_LAYOUT_BITANGENT = 0x5
} VertexLayout;
struct MeshBufferInfo
{
VkBuffer buf = VK_NULL_HANDLE;
VkDeviceMemory mem = VK_NULL_HANDLE;
};
struct MeshBuffer
{
MeshBufferInfo vertices;
MeshBufferInfo indices;
uint32_t indexCount;
};
// Get vertex size from vertex layout
static uint32_t vertexSize(std::vector<vkMeshLoader::VertexLayout> layout)
{
uint32_t vSize = 0;
for (auto& layoutDetail : layout)
{
switch (layoutDetail)
{
// UV only has two components
case VERTEX_LAYOUT_UV:
vSize += 2 * sizeof(float);
break;
default:
vSize += 3 * sizeof(float);
}
}
return vSize;
}
static void freeMeshBufferResources(VkDevice device, vkMeshLoader::MeshBuffer *meshBuffer)
{
vkDestroyBuffer(device, meshBuffer->vertices.buf, nullptr);
vkFreeMemory(device, meshBuffer->vertices.mem, nullptr);
if (meshBuffer->indices.buf != VK_NULL_HANDLE)
{
vkDestroyBuffer(device, meshBuffer->indices.buf, nullptr);
vkFreeMemory(device, meshBuffer->indices.mem, nullptr);
}
}
}
// Simple mesh class for getting all the necessary stuff from models loaded via ASSIMP
class VulkanMeshLoader {
private:
struct Vertex
{
glm::vec3 m_pos;
glm::vec2 m_tex;
glm::vec3 m_normal;
glm::vec3 m_color;
glm::vec3 m_tangent;
glm::vec3 m_binormal;
Vertex() {}
Vertex(const glm::vec3& pos, const glm::vec2& tex, const glm::vec3& normal, const glm::vec3& tangent, const glm::vec3& bitangent, const glm::vec3& color)
{
m_pos = pos;
m_tex = tex;
m_normal = normal;
m_color = color;
m_tangent = tangent;
m_binormal = bitangent;
}
};
struct MeshEntry {
uint32_t NumIndices;
uint32_t MaterialIndex;
uint32_t vertexBase;
std::vector<Vertex> Vertices;
std::vector<unsigned int> Indices;
};
VkBool32 getMemoryType(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkFlags properties, uint32_t * typeIndex)
{
for (int i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
return false;
}
public:
std::vector<MeshEntry> m_Entries;
struct Dimension
{
glm::vec3 min = glm::vec3(FLT_MAX);
glm::vec3 max = glm::vec3(-FLT_MAX);
glm::vec3 size;
} dim;
uint32_t numVertices = 0;
// Optional
struct
{
VkBuffer buf;
VkDeviceMemory mem;
} vertexBuffer;
struct {
VkBuffer buf;
VkDeviceMemory mem;
uint32_t count;
} indexBuffer;
VkPipelineVertexInputStateCreateInfo vi;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
VkPipeline pipeline;
Assimp::Importer Importer;
const aiScene* pScene;
~VulkanMeshLoader()
{
m_Entries.clear();
}
// Loads the mesh with some default flags
bool LoadMesh(const std::string& Filename)
{
int flags = aiProcess_FlipWindingOrder | aiProcess_Triangulate | aiProcess_PreTransformVertices | aiProcess_CalcTangentSpace | aiProcess_GenSmoothNormals;
return LoadMesh(Filename, flags);
}
// Load the mesh with custom flags
bool LoadMesh(const std::string& Filename, int flags)
{
pScene = Importer.ReadFile(Filename.c_str(), flags);
if (pScene)
{
return InitFromScene(pScene, Filename);
}
else
{
printf("Error parsing '%s': '%s'\n", Filename.c_str(), Importer.GetErrorString());
return false;
}
}
bool InitFromScene(const aiScene* pScene, const std::string& Filename)
{
m_Entries.resize(pScene->mNumMeshes);
// Counters
for (unsigned int i = 0; i < m_Entries.size(); i++)
{
m_Entries[i].vertexBase = numVertices;
numVertices += pScene->mMeshes[i]->mNumVertices;;
}
// Initialize the meshes in the scene one by one
for (unsigned int i = 0; i < m_Entries.size(); i++)
{
const aiMesh* paiMesh = pScene->mMeshes[i];
InitMesh(i, paiMesh, pScene);
}
return true;
}
void InitMesh(unsigned int index, const aiMesh* paiMesh, const aiScene* pScene)
{
m_Entries[index].MaterialIndex = paiMesh->mMaterialIndex;
aiColor3D pColor(0.f, 0.f, 0.f);
pScene->mMaterials[paiMesh->mMaterialIndex]->Get(AI_MATKEY_COLOR_DIFFUSE, pColor);
aiVector3D Zero3D(0.0f, 0.0f, 0.0f);
for (unsigned int i = 0; i < paiMesh->mNumVertices; i++) {
aiVector3D* pPos = &(paiMesh->mVertices[i]);
aiVector3D* pNormal = &(paiMesh->mNormals[i]);
aiVector3D *pTexCoord;
if (paiMesh->HasTextureCoords(0))
{
pTexCoord = &(paiMesh->mTextureCoords[0][i]);
}
else {
pTexCoord = &Zero3D;
}
aiVector3D* pTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mTangents[i]) : &Zero3D;
aiVector3D* pBiTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mBitangents[i]) : &Zero3D;
Vertex v(glm::vec3(pPos->x, -pPos->y, pPos->z),
glm::vec2(pTexCoord->x , pTexCoord->y),
glm::vec3(pNormal->x, pNormal->y, pNormal->z),
glm::vec3(pTangent->x, pTangent->y, pTangent->z),
glm::vec3(pBiTangent->x, pBiTangent->y, pBiTangent->z),
glm::vec3(pColor.r, pColor.g, pColor.b)
);
dim.max.x = fmax(pPos->x, dim.max.x);
dim.max.y = fmax(pPos->y, dim.max.y);
dim.max.z = fmax(pPos->z, dim.max.z);
dim.min.x = fmin(pPos->x, dim.min.x);
dim.min.y = fmin(pPos->y, dim.min.y);
dim.min.z = fmin(pPos->z, dim.min.z);
m_Entries[index].Vertices.push_back(v);
}
dim.size = dim.max - dim.min;
for (unsigned int i = 0; i < paiMesh->mNumFaces; i++)
{
const aiFace& Face = paiMesh->mFaces[i];
assert(Face.mNumIndices == 3);
m_Entries[index].Indices.push_back(Face.mIndices[0]);
m_Entries[index].Indices.push_back(Face.mIndices[1]);
m_Entries[index].Indices.push_back(Face.mIndices[2]);
}
}
// Clean up vulkan resources used by a mesh
static void freeVulkanResources(VkDevice device, VulkanMeshLoader *mesh)
{
vkDestroyBuffer(device, mesh->vertexBuffer.buf, nullptr);
vkFreeMemory(device, mesh->vertexBuffer.mem, nullptr);
vkDestroyBuffer(device, mesh->indexBuffer.buf, nullptr);
vkFreeMemory(device, mesh->indexBuffer.mem, nullptr);
}
// Create vertex and index buffer with given layout
void createVulkanBuffers(
VkDevice device,
VkPhysicalDeviceMemoryProperties deviceMemoryProperties,
vkMeshLoader::MeshBuffer *meshBuffer,
std::vector<vkMeshLoader::VertexLayout> layout,
float scale)
{
std::vector<float> vertexBuffer;
for (int m = 0; m < m_Entries.size(); m++)
{
for (int i = 0; i < m_Entries[m].Vertices.size(); i++)
{
// Push vertex data depending on layout
for (auto& layoutDetail : layout)
{
// Position
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_POSITION)
{
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.x * scale);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.y * scale);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.z * scale);
}
// Normal
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_NORMAL)
{
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_normal.x);
vertexBuffer.push_back(-m_Entries[m].Vertices[i].m_normal.y);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_normal.z);
}
// Texture coordinates
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_UV)
{
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tex.s);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tex.t);
}
// Color
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_COLOR)
{
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.r);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.g);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.b);
}
// Tangent
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_TANGENT)
{
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.x);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.y);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.z);
}
// Bitangent
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_BITANGENT)
{
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.x);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.y);
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.z);
}
// todo : add checks if vertex component exists
}
}
}
size_t vertexBufferSize = vertexBuffer.size() * sizeof(float);
std::vector<uint32_t> indexBuffer;
for (uint32_t m = 0; m < m_Entries.size(); m++)
{
uint32_t indexBase = (uint32_t)indexBuffer.size();
for (uint32_t i = 0; i < m_Entries[m].Indices.size(); i++)
{
indexBuffer.push_back(m_Entries[m].Indices[i] + indexBase);
}
}
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Generate vertex buffer
VkBufferCreateInfo vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize);
err = vkCreateBuffer(device, &vBufferInfo, nullptr, &meshBuffer->vertices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, meshBuffer->vertices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(deviceMemoryProperties, memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &meshBuffer->vertices.mem);
assert(!err);
err = vkMapMemory(device, meshBuffer->vertices.mem, 0, vertexBufferSize, 0, &data);
assert(!err);
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, meshBuffer->vertices.mem);
err = vkBindBufferMemory(device, meshBuffer->vertices.buf, meshBuffer->vertices.mem, 0);
assert(!err);
// Generate index buffer
VkBufferCreateInfo iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize);
err = vkCreateBuffer(device, &iBufferInfo, nullptr, &meshBuffer->indices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, meshBuffer->indices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(deviceMemoryProperties, memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &meshBuffer->indices.mem);
assert(!err);
err = vkMapMemory(device, meshBuffer->indices.mem, 0, indexBufferSize, 0, &data);
assert(!err);
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, meshBuffer->indices.mem);
err = vkBindBufferMemory(device, meshBuffer->indices.buf, meshBuffer->indices.mem, 0);
assert(!err);
meshBuffer->indexCount = (uint32_t)indexBuffer.size();
}
};