procedural-3d-engine/deferred/deferred.cpp

1339 lines
44 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Vulkan Example - Deferred shading multiple render targets (aka G-Buffer) example
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
2016-02-16 15:07:25 +01:00
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Texture properties
#define TEX_DIM 1024
#define TEX_FILTER VK_FILTER_LINEAR
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL
};
class VulkanExample : public VulkanExampleBase
{
public:
bool debugDisplay = true;
struct {
vkTools::VulkanTexture colorMap;
} textures;
struct {
vkMeshLoader::MeshBuffer example;
vkMeshLoader::MeshBuffer quad;
} meshes;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
} uboVS, uboOffscreenVS;
struct Light {
glm::vec4 position;
glm::vec4 color;
float radius;
float quadraticFalloff;
float linearFalloff;
float _pad;
};
struct {
Light lights[5];
glm::vec4 viewPos;
} uboFragmentLights;
struct {
vkTools::UniformData vsFullScreen;
vkTools::UniformData vsOffscreen;
vkTools::UniformData fsLights;
} uniformData;
struct {
VkPipeline deferred;
VkPipeline offscreen;
VkPipeline debug;
} pipelines;
struct {
VkPipelineLayout deferred;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet offscreen;
} descriptorSets;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
VkFormat format;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment position, normal, albedo;
FrameBufferAttachment depth;
VkRenderPass renderPass;
} offScreenFrameBuf;
// Texture targets
struct {
vkTools::VulkanTexture position;
vkTools::VulkanTexture normal;
vkTools::VulkanTexture albedo;
} textureTargets;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -8.0f;
rotation = { 0.0f, 0.0f, 0.0f };
width = 1024;
height = 1024;
enableTextOverlay = true;
2016-02-16 15:07:25 +01:00
title = "Vulkan Example - Deferred shading";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Texture targets
textureLoader->destroyTexture(textureTargets.position);
textureLoader->destroyTexture(textureTargets.normal);
textureLoader->destroyTexture(textureTargets.albedo);
// Frame buffer
// Color attachments
vkDestroyImageView(device, offScreenFrameBuf.position.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.position.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.position.mem, nullptr);
vkDestroyImageView(device, offScreenFrameBuf.normal.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.normal.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.normal.mem, nullptr);
vkDestroyImageView(device, offScreenFrameBuf.albedo.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.albedo.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.albedo.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.deferred, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.example);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformData.vsOffscreen);
vkTools::destroyUniformData(device, &uniformData.vsFullScreen);
vkTools::destroyUniformData(device, &uniformData.fsLights);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr);
textureLoader->destroyTexture(textures.colorMap);
}
// Preapre an empty texture as the blit target from
// the offscreen framebuffer
void prepareTextureTarget(vkTools::VulkanTexture *target, VkFormat format)
{
VkFormatProperties formatProperties;
VkResult err;
uint32_t width = TEX_DIM;
uint32_t height = TEX_DIM;
// Prepare blit target texture
target->width = width;
target->height = height;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
// Texture will be sampled in a shader and is also the blit destination
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &target->image));
2016-02-16 15:07:25 +01:00
vkGetImageMemoryRequirements(device, target->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &target->deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, target->image, target->deviceMemory, 0));
2016-02-16 15:07:25 +01:00
// Image memory barrier
// Set initial layout for the offscreen texture to shader read
// Will be transformed while updating the texture
textureTargets.position.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
target->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
textureTargets.position.imageLayout);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = TEX_FILTER;
sampler.minFilter = TEX_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
sampler.addressModeV = sampler.addressModeV;
sampler.addressModeW = sampler.addressModeV;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
2016-02-16 15:07:25 +01:00
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &target->sampler));
2016-02-16 15:07:25 +01:00
// Create image view
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = target->image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &target->view));
2016-02-16 15:07:25 +01:00
}
void prepareTextureTargets()
{
createSetupCommandBuffer();
prepareTextureTarget(&textureTargets.position, VK_FORMAT_R16G16B16A16_SFLOAT);
prepareTextureTarget(&textureTargets.normal, VK_FORMAT_R16G16B16A16_SFLOAT);
prepareTextureTarget(&textureTargets.albedo, VK_FORMAT_R8G8B8A8_UNORM);
flushSetupCommandBuffer();
}
// Create a frame buffer attachment
void createAttachment(
VkFormat format,
VkImageUsageFlagBits usage,
FrameBufferAttachment *attachment)
{
VkImageAspectFlags aspectMask = 0;
VkImageLayout imageLayout;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.extent.depth = 1;
2016-02-16 15:07:25 +01:00
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = usage | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
2016-02-16 15:07:25 +01:00
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0));
2016-02-16 15:07:25 +01:00
vkTools::setImageLayout(
setupCmdBuffer,
attachment->image,
aspectMask,
VK_IMAGE_LAYOUT_UNDEFINED,
imageLayout);
VkImageViewCreateInfo imageView = vkTools::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageView.format = format;
imageView.subresourceRange = {};
imageView.subresourceRange.aspectMask = aspectMask;
imageView.subresourceRange.baseMipLevel = 0;
imageView.subresourceRange.levelCount = 1;
imageView.subresourceRange.baseArrayLayer = 0;
imageView.subresourceRange.layerCount = 1;
2016-02-16 15:07:25 +01:00
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view));
2016-02-16 15:07:25 +01:00
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// blitted to our render target
void prepareOffscreenFramebuffer()
{
offScreenFrameBuf.width = FB_DIM;
offScreenFrameBuf.height = FB_DIM;
// Color attachments
// (World space) Positions
createAttachment(
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&offScreenFrameBuf.position);
// (World space) Normals
createAttachment(
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&offScreenFrameBuf.normal);
// Albedo (color)
createAttachment(
VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&offScreenFrameBuf.albedo);
// Depth attachment
// Find a suitable depth format
VkFormat attDepthFormat;
VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &attDepthFormat);
assert(validDepthFormat);
2016-02-16 15:07:25 +01:00
createAttachment(
attDepthFormat,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
&offScreenFrameBuf.depth);
// Set up separate renderpass with references
// to the color and depth attachments
std::array<VkAttachmentDescription, 4> attachmentDescs = {};
2016-02-16 15:07:25 +01:00
// Init attachment properties
for (uint32_t i = 0; i < 4; ++i)
{
attachmentDescs[i].samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachmentDescs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachmentDescs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
if (i == 3)
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
else
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
}
// Formats
attachmentDescs[0].format = offScreenFrameBuf.position.format;
attachmentDescs[1].format = offScreenFrameBuf.normal.format;
attachmentDescs[2].format = offScreenFrameBuf.albedo.format;
attachmentDescs[3].format = offScreenFrameBuf.depth.format;
std::vector<VkAttachmentReference> colorReferences;
colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
colorReferences.push_back({ 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
colorReferences.push_back({ 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
VkAttachmentReference depthReference = {};
depthReference.attachment = 3;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.pColorAttachments = colorReferences.data();
subpass.colorAttachmentCount = colorReferences.size();
subpass.pDepthStencilAttachment = &depthReference;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pAttachments = attachmentDescs.data();
renderPassInfo.attachmentCount = attachmentDescs.size();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offScreenFrameBuf.renderPass));
2016-02-16 15:07:25 +01:00
std::array<VkImageView,4> attachments;
attachments[0] = offScreenFrameBuf.position.view;
attachments[1] = offScreenFrameBuf.normal.view;
attachments[2] = offScreenFrameBuf.albedo.view;
// depth
attachments[3] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass;
fbufCreateInfo.pAttachments = attachments.data();
fbufCreateInfo.attachmentCount = attachments.size();
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer));
2016-02-16 15:07:25 +01:00
flushSetupCommandBuffer();
createSetupCommandBuffer();
}
// Blit frame buffer attachment to texture target
void blit(VkImage source, VkImage dest)
{
// Image memory barrier
// Transform frame buffer color attachment to transfer source layout
// Makes sure that writes to the color attachment are finished before
// using it as source for the blit
vkTools::setImageLayout(
offScreenCmdBuffer,
source,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Image memory barrier
// Transform texture from shader read (initial layout) to transfer destination layout
// Makes sure that reads from texture are finished before
// using it as a transfer destination for the blit
vkTools::setImageLayout(
offScreenCmdBuffer,
dest,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Blit offscreen color buffer to our texture target
VkImageBlit imgBlit;
imgBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgBlit.srcSubresource.mipLevel = 0;
imgBlit.srcSubresource.baseArrayLayer = 0;
imgBlit.srcSubresource.layerCount = 1;
imgBlit.srcOffsets[0] = { 0, 0, 0 };
imgBlit.srcOffsets[1].x = offScreenFrameBuf.width;
imgBlit.srcOffsets[1].y = offScreenFrameBuf.height;
imgBlit.srcOffsets[1].z = 1;
imgBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgBlit.dstSubresource.mipLevel = 0;
imgBlit.dstSubresource.baseArrayLayer = 0;
imgBlit.dstSubresource.layerCount = 1;
imgBlit.dstOffsets[0] = { 0, 0, 0 };
imgBlit.dstOffsets[1].x = textureTargets.position.width;
imgBlit.dstOffsets[1].y = textureTargets.position.height;
imgBlit.dstOffsets[1].z = 1;
// Blit from framebuffer image to texture image
// vkCmdBlitImage does scaling and (if necessary and possible) also does format conversions
vkCmdBlitImage(
offScreenCmdBuffer,
source,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dest,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&imgBlit,
VK_FILTER_LINEAR
);
// Image memory barrier
// Transform texture from transfer destination to shader read
// Makes sure that writes to the texture are finished before
// using it as the source for a sampler in the shader
vkTools::setImageLayout(
offScreenCmdBuffer,
dest,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Image memory barrier
// Transform the framebuffer color attachment back
vkTools::setImageLayout(
offScreenCmdBuffer,
source,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
// Build command buffer for rendering the scene to the offscreen frame buffer
// and blitting it to the different texture targets
void buildDeferredCommandBuffer()
{
// Create separate command buffer for offscreen
// rendering
if (offScreenCmdBuffer == VK_NULL_HANDLE)
{
VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer));
2016-02-16 15:07:25 +01:00
}
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
// Clear values for all attachments written in the fragment sahder
std::array<VkClearValue,4> clearValues;
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[3].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offScreenFrameBuf.renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = clearValues.size();
renderPassBeginInfo.pClearValues = clearValues.data();
VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo));
2016-02-16 15:07:25 +01:00
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)offScreenFrameBuf.width,
(float)offScreenFrameBuf.height,
0.0f,
1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
offScreenFrameBuf.width,
offScreenFrameBuf.height,
0,
0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
blit(offScreenFrameBuf.position.image, textureTargets.position.image);
blit(offScreenFrameBuf.normal.image, textureTargets.normal.image);
blit(offScreenFrameBuf.albedo.image, textureTargets.albedo.image);
VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer));
2016-02-16 15:07:25 +01:00
}
void loadTextures()
{
textureLoader->loadTexture(
getAssetPath() + "models/armor/colormap.ktx",
2016-02-16 15:07:25 +01:00
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.colorMap);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
2016-02-16 15:07:25 +01:00
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL);
if (debugDisplay)
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1);
// Move viewport to display final composition in lower right corner
viewport.x = viewport.width * 0.5f;
viewport.y = viewport.height * 0.5f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
}
// Final composition as full screen quad
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.deferred);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], 6, 1, 0, 0, 1);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
2016-02-16 15:07:25 +01:00
}
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/armor/armor.dae", &meshes.example, vertexLayout, 1.0f);
2016-02-16 15:07:25 +01:00
}
void generateQuads()
{
// Setup vertices for multiple screen aligned quads
// Used for displaying final result and debug
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
};
std::vector<Vertex> vertexBuffer;
float x = 0.0f;
float y = 0.0f;
for (uint32_t i = 0; i < 3; i++)
{
// Last component of normal is used for debug display sampler index
vertexBuffer.push_back({ { x+1.0f, y+1.0f, 0.0f }, { 1.0f, 1.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } });
vertexBuffer.push_back({ { x, y+1.0f, 0.0f }, { 0.0f, 1.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } });
vertexBuffer.push_back({ { x, y, 0.0f }, { 0.0f, 0.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } });
vertexBuffer.push_back({ { x+1.0f, y, 0.0f }, { 1.0f, 0.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } });
x += 1.0f;
if (x > 1.0f)
{
x = 0.0f;
y += 1.0f;
}
}
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
for (uint32_t i = 0; i < 3; ++i)
{
uint32_t indices[6] = { 0,1,2, 2,3,0 };
for (auto index : indices)
{
indexBuffer.push_back(i * 4 + index);
}
}
meshes.quad.indexCount = indexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
2016-02-16 15:07:25 +01:00
}
void setupDescriptorSetLayout()
{
// Deferred shading layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Position texture target / Scene colormap
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2 : Normals texture target
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// Binding 3 : Albedo texture target
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
// Binding 4 : Fragment shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
4),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
2016-02-16 15:07:25 +01:00
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred));
2016-02-16 15:07:25 +01:00
// Offscreen (scene) rendering pipeline layout
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
2016-02-16 15:07:25 +01:00
}
void setupDescriptorSet()
{
// Textured quad descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
2016-02-16 15:07:25 +01:00
// Image descriptor for the offscreen texture targets
VkDescriptorImageInfo texDescriptorPosition =
vkTools::initializers::descriptorImageInfo(
textureTargets.position.sampler,
textureTargets.position.view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorImageInfo texDescriptorNormal =
vkTools::initializers::descriptorImageInfo(
textureTargets.normal.sampler,
textureTargets.normal.view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorImageInfo texDescriptorAlbedo =
vkTools::initializers::descriptorImageInfo(
textureTargets.albedo.sampler,
textureTargets.albedo.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsFullScreen.descriptor),
// Binding 1 : Position texture target
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorPosition),
// Binding 2 : Normals texture target
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorNormal),
// Binding 3 : Albedo texture target
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
3,
&texDescriptorAlbedo),
// Binding 4 : Fragment shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
4,
&uniformData.fsLights.descriptor),
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Offscreen (scene)
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
2016-02-16 15:07:25 +01:00
VkDescriptorImageInfo texDescriptorSceneColormap =
vkTools::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsOffscreen.descriptor),
// Binding 1 : Scene color map
vkTools::initializers::writeDescriptorSet(
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorSceneColormap)
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Final fullscreen pass pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
2016-02-16 15:07:25 +01:00
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.deferred,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred));
2016-02-16 15:07:25 +01:00
// Debug display pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug));
2016-02-16 15:07:25 +01:00
// Offscreen pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
2016-02-16 15:07:25 +01:00
// Separate render pass
pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass;
// Separate layout
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
// Blend attachment states required for all color attachments
// This is important, as color write mask will otherwise be 0x0 and you
// won't see anything rendered to the attachment
std::array<VkPipelineColorBlendAttachmentState, 3> blendAttachmentStates = {
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE)
};
colorBlendState.attachmentCount = blendAttachmentStates.size();
colorBlendState.pAttachments = blendAttachmentStates.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen));
2016-02-16 15:07:25 +01:00
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Fullscreen vertex shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
2016-02-16 15:07:25 +01:00
sizeof(uboVS),
nullptr,
2016-02-16 15:07:25 +01:00
&uniformData.vsFullScreen.buffer,
&uniformData.vsFullScreen.memory,
&uniformData.vsFullScreen.descriptor);
// Deferred vertex shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
2016-02-16 15:07:25 +01:00
sizeof(uboOffscreenVS),
nullptr,
2016-02-16 15:07:25 +01:00
&uniformData.vsOffscreen.buffer,
&uniformData.vsOffscreen.memory,
&uniformData.vsOffscreen.descriptor);
// Deferred fragment shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
2016-02-16 15:07:25 +01:00
sizeof(uboFragmentLights),
nullptr,
2016-02-16 15:07:25 +01:00
&uniformData.fsLights.buffer,
&uniformData.fsLights.memory,
&uniformData.fsLights.descriptor);
// Update
updateUniformBuffersScreen();
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
void updateUniformBuffersScreen()
{
if (debugDisplay)
{
uboVS.projection = glm::ortho(0.0f, 2.0f, 0.0f, 2.0f, -1.0f, 1.0f);
}
else
{
uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f);
}
uboVS.model = glm::mat4();
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsFullScreen.memory, 0, sizeof(uboVS), 0, (void **)&pData));
2016-02-16 15:07:25 +01:00
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsFullScreen.memory);
}
void updateUniformBufferDeferredMatrices()
{
uboOffscreenVS.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f);
2016-02-16 15:07:25 +01:00
uboOffscreenVS.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
uboOffscreenVS.model = glm::mat4();
uboOffscreenVS.model = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.25f, 0.0f) + cameraPos);
uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
2016-02-16 15:07:25 +01:00
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsOffscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData));
2016-02-16 15:07:25 +01:00
memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS));
vkUnmapMemory(device, uniformData.vsOffscreen.memory);
}
// Update fragment shader light position uniform block
void updateUniformBufferDeferredLights()
{
// White light from above
uboFragmentLights.lights[0].position = glm::vec4(0.0f, 3.0f, 1.0f, 0.0f);
uboFragmentLights.lights[0].color = glm::vec4(1.5f);
uboFragmentLights.lights[0].radius = 15.0f;
uboFragmentLights.lights[0].linearFalloff = 0.3f;
uboFragmentLights.lights[0].quadraticFalloff = 0.4f;
// Red light
uboFragmentLights.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f);
uboFragmentLights.lights[1].color = glm::vec4(1.5f, 0.0f, 0.0f, 0.0f);
uboFragmentLights.lights[1].radius = 15.0f;
uboFragmentLights.lights[1].linearFalloff = 0.4f;
uboFragmentLights.lights[1].quadraticFalloff = 0.3f;
// Blue light
uboFragmentLights.lights[2].position = glm::vec4(2.0f, 1.0f, 0.0f, 0.0f);
uboFragmentLights.lights[2].color = glm::vec4(0.0f, 0.0f, 2.5f, 0.0f);
uboFragmentLights.lights[2].radius = 10.0f;
uboFragmentLights.lights[2].linearFalloff = 0.45f;
uboFragmentLights.lights[2].quadraticFalloff = 0.35f;
// Belt glow
uboFragmentLights.lights[3].position = glm::vec4(0.0f, 0.7f, 0.5f, 0.0f);
uboFragmentLights.lights[3].color = glm::vec4(2.5f, 2.5f, 0.0f, 0.0f);
uboFragmentLights.lights[3].radius = 5.0f;
uboFragmentLights.lights[3].linearFalloff = 8.0f;
uboFragmentLights.lights[3].quadraticFalloff = 6.0f;
// Green light
uboFragmentLights.lights[4].position = glm::vec4(3.0f, 2.0f, 1.0f, 0.0f);
uboFragmentLights.lights[4].color = glm::vec4(0.0f, 1.5f, 0.0f, 0.0f);
uboFragmentLights.lights[4].radius = 10.0f;
uboFragmentLights.lights[4].linearFalloff = 0.8f;
uboFragmentLights.lights[4].quadraticFalloff = 0.6f;
// Current view position
uboFragmentLights.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f);
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.fsLights.memory, 0, sizeof(uboFragmentLights), 0, (void **)&pData));
2016-02-16 15:07:25 +01:00
memcpy(pData, &uboFragmentLights, sizeof(uboFragmentLights));
vkUnmapMemory(device, uniformData.fsLights.memory);
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Submit offscreen rendering command buffer
// todo : use event to ensure that offscreen result is finished bfore render command buffer is started
std::vector<VkCommandBuffer> submitCmdBuffers = {
offScreenCmdBuffer,
drawCmdBuffers[currentBuffer],
};
submitCmdBuffers.push_back(drawCmdBuffers[currentBuffer]);
submitInfo.commandBufferCount = submitCmdBuffers.size();
submitInfo.pCommandBuffers = submitCmdBuffers.data();
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
2016-02-16 15:07:25 +01:00
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
generateQuads();
loadMeshes();
setupVertexDescriptions();
prepareOffscreenFramebuffer();
prepareUniformBuffers();
prepareTextureTargets();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
buildDeferredCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBufferDeferredMatrices();
}
void toggleDebugDisplay()
{
debugDisplay = !debugDisplay;
reBuildCommandBuffers();
updateUniformBuffersScreen();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case 0x44:
case GAMEPAD_BUTTON_A:
toggleDebugDisplay();
updateTextOverlay();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("Press \"Button A\" to toggle render targets", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("Press \"d\" to to toggle render targets", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#endif
// Render targets
if (debugDisplay)
{
textOverlay->addText("World Position", (float)width * 0.25f, (float)height * 0.5f - 25.0f, VulkanTextOverlay::alignCenter);
textOverlay->addText("World normals", (float)width * 0.75f, (float)height * 0.5f - 25.0f, VulkanTextOverlay::alignCenter);
textOverlay->addText("Color", (float)width * 0.25f, (float)height - 25.0f, VulkanTextOverlay::alignCenter);
textOverlay->addText("Final image", (float)width * 0.75f, (float)height - 25.0f, VulkanTextOverlay::alignCenter);
}
}
2016-02-16 15:07:25 +01:00
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
2016-02-16 15:07:25 +01:00
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
2016-02-16 15:07:25 +01:00
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
2016-02-16 15:07:25 +01:00
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
2016-02-16 15:07:25 +01:00
vulkanExample = new VulkanExample();
#if defined(_WIN32)
2016-02-16 15:07:25 +01:00
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
2016-02-16 15:07:25 +01:00
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
2016-02-16 15:07:25 +01:00
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
return 0;
#endif
}