procedural-3d-engine/deferredshadows/deferredshadows.cpp

1584 lines
57 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Deferred shading with shadows from multiple light sources using geometry shader instancing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/rotate_vector.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Shadowmap properties
#define SHADOWMAP_DIM 2048
#define SHADOWMAP_FILTER VK_FILTER_LINEAR
// 16 bits of depth is enough for such a small scene
#define SHADOWMAP_FORMAT VK_FORMAT_D32_SFLOAT_S8_UINT
#define FB_DIM 2048
// Must match the LIGHT_COUNT define in the shadow and deferred shaders
#define LIGHT_COUNT 3
// Vertex layout for this example
// todo: create class for vertex layout
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_TANGENT
};
class VulkanExample : public VulkanExampleBase
{
public:
bool debugDisplay = false;
// Keep depth range as small as possible
// for better shadow map precision
float zNear = 0.1f;
float zFar = 64.0f;
float lightFOV = 75.0f;
// Depth bias (and slope) are used to avoid shadowing artefacts
float depthBiasConstant = 1.25f;
float depthBiasSlope = 1.75f;
struct {
struct {
vkTools::VulkanTexture colorMap;
vkTools::VulkanTexture normalMap;
} model;
struct {
vkTools::VulkanTexture colorMap;
vkTools::VulkanTexture normalMap;
} background;
} textures;
struct {
vkMeshLoader::MeshBuffer model;
vkMeshLoader::MeshBuffer background;
vkMeshLoader::MeshBuffer quad;
} meshes;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec4 instancePos[3];
int layer;
} uboVS, uboOffscreenVS;
// This UBO stores the shadow matrices for all of the light sources
// The matrices are indexed using geometry shader instancing
// The instancePos is used to place the models using instanced draws
struct {
glm::mat4 mvp[LIGHT_COUNT];
glm::vec4 instancePos[3];
} uboShadowGS;
struct Light {
glm::vec4 position;
glm::vec4 target;
glm::vec4 color;
glm::mat4 viewMatrix;
};
struct {
glm::vec4 viewPos;
Light lights[LIGHT_COUNT];
} uboFragmentLights;
struct {
vkTools::UniformData vsFullScreen;
vkTools::UniformData vsOffscreen;
vkTools::UniformData fsLights;
vkTools::UniformData uboShadowGS;
} uniformData;
struct {
VkPipeline deferred;
VkPipeline offscreen;
VkPipeline debug;
VkPipeline shadowpass;
} pipelines;
struct {
//todo: rename, shared with deferred and shadow pass
VkPipelineLayout deferred;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet model;
VkDescriptorSet background;
VkDescriptorSet shadow;
} descriptorSets;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// todo : move to vktools (or separate unit)
struct FrameBufferAttachment
{
VkImage image;
VkDeviceMemory mem;
VkImageView view;
VkFormat format;
bool isDepth = false;
};
// todo : move to vktools (or separate unit) and turn into class
struct FrameBuffer
{
uint32_t width, height;
VkFramebuffer frameBuffer;
std::vector<FrameBufferAttachment> attachments;
VkRenderPass renderPass;
VkSampler sampler;
void FreeResources(VkDevice device)
{
for (auto attachment : attachments)
{
vkDestroyImage(device, attachment.image, nullptr);
vkDestroyImageView(device, attachment.view, nullptr);
vkFreeMemory(device, attachment.mem, nullptr);
}
vkDestroySampler(device, sampler, nullptr);
vkDestroyRenderPass(device, renderPass, nullptr);
vkDestroyFramebuffer(device, frameBuffer, nullptr);
}
};
struct
{
// Framebuffer resources for the deferred pass
FrameBuffer deferred;
// Framebuffer resources for the shadow pass
FrameBuffer shadow;
} frameBuffers;
struct {
VkCommandBuffer deferred = VK_NULL_HANDLE;
} commandBuffers;
// Semaphore used to synchronize between offscreen and final scene rendering
VkSemaphore offscreenSemaphore = VK_NULL_HANDLE;
// Device features to be enabled for this example
static VkPhysicalDeviceFeatures getEnabledFeatures()
{
VkPhysicalDeviceFeatures enabledFeatures = {};
enabledFeatures.geometryShader = VK_TRUE;
enabledFeatures.shaderClipDistance = VK_TRUE;
enabledFeatures.shaderCullDistance = VK_TRUE;
enabledFeatures.shaderTessellationAndGeometryPointSize = VK_TRUE;
return enabledFeatures;
}
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION, getEnabledFeatures)
{
enableTextOverlay = true;
title = "Vulkan Example - Deferred shading with shadow mapping";
camera.type = Camera::CameraType::firstperson;
camera.movementSpeed = 5.0f;
camera.rotationSpeed = 0.25f;
camera.position = { 2.15f, 0.3f, -8.75f };
camera.setRotation(glm::vec3(-0.75f, 12.5f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, zNear, zFar);
}
~VulkanExample()
{
// Frame buffers
frameBuffers.shadow.FreeResources(device);
frameBuffers.deferred.FreeResources(device);
vkDestroyPipeline(device, pipelines.deferred, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.shadowpass, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.model);
vkMeshLoader::freeMeshBufferResources(device, &meshes.background);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformData.vsOffscreen);
vkTools::destroyUniformData(device, &uniformData.vsFullScreen);
vkTools::destroyUniformData(device, &uniformData.fsLights);
vkTools::destroyUniformData(device, &uniformData.uboShadowGS);
vkFreeCommandBuffers(device, cmdPool, 1, &commandBuffers.deferred);
// Textures
textureLoader->destroyTexture(textures.model.colorMap);
textureLoader->destroyTexture(textures.model.normalMap);
textureLoader->destroyTexture(textures.background.colorMap);
textureLoader->destroyTexture(textures.background.normalMap);
vkDestroySemaphore(device, offscreenSemaphore, nullptr);
}
// Create a frame buffer attachment
// todo : move into frame buffer class
void createAttachment(VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment *attachment, VkCommandBuffer layoutCmd, bool depthSample = false)
{
VkImageAspectFlags aspectMask = 0;
VkImageLayout imageLayout;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
imageLayout = depthSample ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachment->isDepth = true;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = frameBuffers.deferred.width;
image.extent.height = frameBuffers.deferred.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = usage | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0));
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
// Set the initial layout to shader read instead of attachment
// This is done as the render loop does the actualy image layout transitions
vkTools::setImageLayout(
layoutCmd,
attachment->image,
aspectMask,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
else
{
vkTools::setImageLayout(
layoutCmd,
attachment->image,
aspectMask,
VK_IMAGE_LAYOUT_UNDEFINED,
imageLayout);
}
VkImageViewCreateInfo imageView = vkTools::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageView.format = format;
imageView.subresourceRange = {};
imageView.subresourceRange.aspectMask = aspectMask;
imageView.subresourceRange.baseMipLevel = 0;
imageView.subresourceRange.levelCount = 1;
imageView.subresourceRange.baseArrayLayer = 0;
imageView.subresourceRange.layerCount = 1;
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view));
}
// Create a layered attachment
// todo: not used yet, move into framebuffer class
void createLayeredAttachment(VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment *attachment, uint32_t layerCount, VkCommandBuffer layoutCmd, bool depthSample = false)
{
VkImageAspectFlags aspectMask = 0;
VkImageLayout imageLayout;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
imageLayout = depthSample ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = frameBuffers.deferred.width;
image.extent.height = frameBuffers.deferred.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = layerCount;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = usage | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = aspectMask;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = layerCount;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
// Set the initial layout to shader read instead of attachment
// This is done as the render loop does the actualy image layout transitions
vkTools::setImageLayout(
layoutCmd,
attachment->image,
aspectMask,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
}
else
{
vkTools::setImageLayout(
layoutCmd,
attachment->image,
aspectMask,
VK_IMAGE_LAYOUT_UNDEFINED,
imageLayout,
subresourceRange);
}
VkImageViewCreateInfo imageView = vkTools::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
imageView.format = format;
imageView.subresourceRange = subresourceRange;
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view));
}
// Prepare a layered shadow map with each layer containing depth from a light's point of view
// The shadow mapping pass uses geometry shader instancing to output the scene from the different
// light sources' point of view to the layers of the depth attachment in one single pass
void shadowSetup()
{
VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
frameBuffers.shadow.width = SHADOWMAP_DIM;
frameBuffers.shadow.height = SHADOWMAP_DIM;
// One layered (depth) attachment
frameBuffers.shadow.attachments.resize(1);
// Color attachment
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = SHADOWMAP_FORMAT;
image.extent.width = frameBuffers.shadow.width;
image.extent.height = frameBuffers.shadow.height;
image.extent.depth = 1;
image.mipLevels = 1;
// Use a layererd attachment with one layer per light
image.arrayLayers = LIGHT_COUNT;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// Sample directly from the depth attachment for the shadow mapping
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
depthStencilView.format = SHADOWMAP_FORMAT;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = LIGHT_COUNT;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &frameBuffers.shadow.attachments[0].image));
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, frameBuffers.shadow.attachments[0].image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &frameBuffers.shadow.attachments[0].mem));
VK_CHECK_RESULT(vkBindImageMemory(device, frameBuffers.shadow.attachments[0].image, frameBuffers.shadow.attachments[0].mem, 0));
// Set the initial layout to shader read instead of attachment
// This is done as the render loop does the actualy image layout transitions
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = LIGHT_COUNT;
vkTools::setImageLayout(
layoutCmd,
frameBuffers.shadow.attachments[0].image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true);
depthStencilView.image = frameBuffers.shadow.attachments[0].image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &frameBuffers.shadow.attachments[0].view));
// Create sampler to sample from to depth attachment
// Used to sample in the fragment shader for shadowed rendering
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = SHADOWMAP_FILTER;
sampler.minFilter = SHADOWMAP_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &frameBuffers.shadow.sampler));
VkAttachmentDescription attachmentDescription = {};
attachmentDescription.format = SHADOWMAP_FORMAT;
attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference attachmentReference = {};
attachmentReference.attachment = 0;
attachmentReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 0;
subpass.pColorAttachments = nullptr;
subpass.pDepthStencilAttachment = &attachmentReference;
VkRenderPassCreateInfo renderPassCreateInfo = vkTools::initializers::renderPassCreateInfo();
renderPassCreateInfo.attachmentCount = 1;
renderPassCreateInfo.pAttachments = &attachmentDescription;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &frameBuffers.shadow.renderPass));
// Create frame buffer
VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = frameBuffers.shadow.renderPass;
// Only one (layered depth) attachment
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &frameBuffers.shadow.attachments[0].view;
fbufCreateInfo.width = frameBuffers.shadow.width;
fbufCreateInfo.height = frameBuffers.shadow.height;
fbufCreateInfo.layers = LIGHT_COUNT;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &frameBuffers.shadow.frameBuffer));
}
// Prepare the framebuffer for offscreen rendering with multiple attachments used as render targets inside the fragment shaders
void deferredSetup()
{
VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
frameBuffers.deferred.width = FB_DIM;
frameBuffers.deferred.height = FB_DIM;
// Four attachments (3 color, 1 depth)
frameBuffers.deferred.attachments.resize(4);
// Color attachments
// Attachment 0: (World space) Positions
createAttachment(
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&frameBuffers.deferred.attachments[0],
layoutCmd);
// Attachment 1: (World space) Normals
createAttachment(
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&frameBuffers.deferred.attachments[1],
layoutCmd);
// Attachment 1: Albedo (color)
createAttachment(
VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&frameBuffers.deferred.attachments[2],
layoutCmd);
// Depth attachment
// Find a suitable depth format
VkFormat attDepthFormat;
VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &attDepthFormat);
assert(validDepthFormat);
createAttachment(
attDepthFormat,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
&frameBuffers.deferred.attachments[3],
layoutCmd);
VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true);
// Set up separate renderpass with references
// to the color and depth attachments
std::array<VkAttachmentDescription, 4> attachmentDescs = {};
// Init attachment properties
for (uint32_t i = 0; i < 4; ++i)
{
attachmentDescs[i].samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachmentDescs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachmentDescs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachmentDescs[i].format = frameBuffers.deferred.attachments[i].format;
if (i == 3)
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
else
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
}
std::vector<VkAttachmentReference> colorReferences;
colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
colorReferences.push_back({ 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
colorReferences.push_back({ 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
VkAttachmentReference depthReference = {};
depthReference.attachment = 3;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.pColorAttachments = colorReferences.data();
subpass.colorAttachmentCount = static_cast<uint32_t>(colorReferences.size());
subpass.pDepthStencilAttachment = &depthReference;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pAttachments = attachmentDescs.data();
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachmentDescs.size());
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &frameBuffers.deferred.renderPass));
std::vector<VkImageView> attachments;
for (auto attachment : frameBuffers.deferred.attachments)
{
attachments.push_back(attachment.view);
}
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = frameBuffers.deferred.renderPass;
fbufCreateInfo.pAttachments = attachments.data();
fbufCreateInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
fbufCreateInfo.width = frameBuffers.deferred.width;
fbufCreateInfo.height = frameBuffers.deferred.height;
fbufCreateInfo.layers = LIGHT_COUNT;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &frameBuffers.deferred.frameBuffer));
// Create sampler to sample from the color attachments
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &frameBuffers.deferred.sampler));
}
// Put render commands for the scene into the given command buffer
void renderScene(VkCommandBuffer cmdBuffer, bool shadow)
{
VkDeviceSize offsets[1] = { 0 };
// Background
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, shadow ? &descriptorSets.shadow : &descriptorSets.background, 0, NULL);
vkCmdBindVertexBuffers(cmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.background.vertices.buf, offsets);
vkCmdBindIndexBuffer(cmdBuffer, meshes.background.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuffer, meshes.background.indexCount, 1, 0, 0, 0);
// Objects
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, shadow ? &descriptorSets.shadow : &descriptorSets.model, 0, NULL);
vkCmdBindVertexBuffers(cmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.model.vertices.buf, offsets);
vkCmdBindIndexBuffer(cmdBuffer, meshes.model.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuffer, meshes.model.indexCount, 3, 0, 0, 0);
}
// Build a secondary command buffer for rendering the scene values to the offscreen frame buffer attachments
void buildDeferredCommandBuffer()
{
if (commandBuffers.deferred == VK_NULL_HANDLE)
{
commandBuffers.deferred = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
}
// Create a semaphore used to synchronize offscreen rendering and usage
VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore));
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
std::array<VkClearValue, 4> clearValues = {};
VkViewport viewport;
VkRect2D scissor;
// Shadow map generation pass first
clearValues[0].depthStencil = { 1.0f, 0 };
renderPassBeginInfo.renderPass = frameBuffers.shadow.renderPass;
renderPassBeginInfo.framebuffer = frameBuffers.shadow.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = frameBuffers.shadow.width;
renderPassBeginInfo.renderArea.extent.height = frameBuffers.shadow.height;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues.data();
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffers.deferred, &cmdBufInfo));
// Change back layout of the depth attachment after sampling in the fragment shader
// todo: replace with subpass dependency
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = LIGHT_COUNT;
vkTools::setImageLayout(
commandBuffers.deferred,
frameBuffers.shadow.attachments[0].image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
subresourceRange);
viewport = vkTools::initializers::viewport((float)frameBuffers.shadow.width, (float)frameBuffers.shadow.height, 0.0f, 1.0f);
vkCmdSetViewport(commandBuffers.deferred, 0, 1, &viewport);
scissor = vkTools::initializers::rect2D(frameBuffers.shadow.width, frameBuffers.shadow.height, 0, 0);
vkCmdSetScissor(commandBuffers.deferred, 0, 1, &scissor);
// Set depth bias (aka "Polygon offset")
vkCmdSetDepthBias(
commandBuffers.deferred,
depthBiasConstant,
0.0f,
depthBiasSlope);
vkCmdBeginRenderPass(commandBuffers.deferred, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(commandBuffers.deferred, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shadowpass);
renderScene(commandBuffers.deferred, true);
vkCmdEndRenderPass(commandBuffers.deferred);
// Change layout of the depth attachment for sampling in the fragment shader
// todo: replace with subpass dependency
vkTools::setImageLayout(
commandBuffers.deferred,
frameBuffers.shadow.attachments[0].image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
// Deferred pass second
// -------------------------------------------------------------------------------------------------------
// Change back layout of the color attachments after sampling in the fragment shader
// todo: replace with subpass dependency
for (auto attachment : frameBuffers.deferred.attachments)
{
if (!attachment.isDepth)
{
vkTools::setImageLayout(
commandBuffers.deferred,
attachment.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
}
// Clear values for all attachments written in the fragment sahder
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[3].depthStencil = { 1.0f, 0 };
renderPassBeginInfo.renderPass = frameBuffers.deferred.renderPass;
renderPassBeginInfo.framebuffer = frameBuffers.deferred.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = frameBuffers.deferred.width;
renderPassBeginInfo.renderArea.extent.height = frameBuffers.deferred.height;
renderPassBeginInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
renderPassBeginInfo.pClearValues = clearValues.data();
vkCmdBeginRenderPass(commandBuffers.deferred, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
viewport = vkTools::initializers::viewport((float)frameBuffers.deferred.width, (float)frameBuffers.deferred.height, 0.0f, 1.0f);
vkCmdSetViewport(commandBuffers.deferred, 0, 1, &viewport);
scissor = vkTools::initializers::rect2D(frameBuffers.deferred.width, frameBuffers.deferred.height, 0, 0);
vkCmdSetScissor(commandBuffers.deferred, 0, 1, &scissor);
vkCmdBindPipeline(commandBuffers.deferred, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
renderScene(commandBuffers.deferred, false);
vkCmdEndRenderPass(commandBuffers.deferred);
// Change back layout of the color attachments after sampling in the fragment shader
// todo: replace with subpass dependency
for (auto attachment : frameBuffers.deferred.attachments)
{
if (!attachment.isDepth)
{
vkTools::setImageLayout(
commandBuffers.deferred,
attachment.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
}
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffers.deferred));
}
void loadTextures()
{
textureLoader->loadTexture(getAssetPath() + "models/armor/colormap.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.model.colorMap);
textureLoader->loadTexture(getAssetPath() + "models/armor/normalmap.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.model.normalMap);
textureLoader->loadTexture(getAssetPath() + "textures/pattern57_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.background.colorMap);
textureLoader->loadTexture(getAssetPath() + "textures/pattern57_normal_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.background.normalMap);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = VulkanExampleBase::frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL);
if (debugDisplay)
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1);
// Move viewport to display final composition in lower right corner
viewport.x = viewport.width * 0.5f;
viewport.y = viewport.height * 0.5f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
}
// Final composition as full screen quad
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.deferred);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], 6, 1, 0, 0, 1);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/armor/armor.dae", &meshes.model, vertexLayout, 1.0f);
vkMeshLoader::MeshCreateInfo meshCreateInfo;
meshCreateInfo.scale = glm::vec3(15.0f);
meshCreateInfo.uvscale = glm::vec2(2.0f);
meshCreateInfo.center = glm::vec3(0.0f, 2.3f, 0.0f);
loadMesh(getAssetPath() + "models/openbox.dae", &meshes.background, vertexLayout, &meshCreateInfo);
}
void generateQuads()
{
// Setup vertices for multiple screen aligned quads
// Used for displaying final result and debug
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
float tangent[3];
};
std::vector<Vertex> vertexBuffer;
float x = 0.0f;
float y = 0.0f;
for (uint32_t i = 0; i < 3; i++)
{
// Last component of normal is used for debug display sampler index
vertexBuffer.push_back({ { x + 1.0f, y + 1.0f, 0.0f },{ 1.0f, 1.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, (float)i } });
vertexBuffer.push_back({ { x, y + 1.0f, 0.0f },{ 0.0f, 1.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, (float)i } });
vertexBuffer.push_back({ { x, y, 0.0f },{ 0.0f, 0.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, (float)i } });
vertexBuffer.push_back({ { x + 1.0f, y, 0.0f },{ 1.0f, 0.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, (float)i } });
x += 1.0f;
if (x > 1.0f)
{
x = 0.0f;
y += 1.0f;
}
}
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
for (uint32_t i = 0; i < 3; ++i)
{
uint32_t indices[6] = { 0,1,2, 2,3,0 };
for (auto index : indices)
{
indexBuffer.push_back(i * 4 + index);
}
}
meshes.quad.indexCount = static_cast<uint32_t>(indexBuffer.size());
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.clear();
vkMeshLoader::getVertexInputAttributeDescriptions(
vertexLayout,
vertices.attributeDescriptions,
VERTEX_BUFFER_BIND_ID);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 12), //todo: separate set layouts
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 16)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
4);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// todo: split for clarity, esp. with GS instancing
// Deferred shading layout (Shared with debug display)
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_GEOMETRY_BIT,
0),
// Binding 1: Position texture
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2: Normals texture
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// Binding 3: Albedo texture
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
// Binding 4: Fragment shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
4),
// Binding 5: Shadow map
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
5),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred));
// Offscreen (scene) rendering pipeline layout
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
}
void setupDescriptorSet()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Textured quad descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Image descriptors for the offscreen color attachments
VkDescriptorImageInfo texDescriptorPosition =
vkTools::initializers::descriptorImageInfo(
frameBuffers.deferred.sampler,
frameBuffers.deferred.attachments[0].view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorImageInfo texDescriptorNormal =
vkTools::initializers::descriptorImageInfo(
frameBuffers.deferred.sampler,
frameBuffers.deferred.attachments[1].view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorImageInfo texDescriptorAlbedo =
vkTools::initializers::descriptorImageInfo(
frameBuffers.deferred.sampler,
frameBuffers.deferred.attachments[2].view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorImageInfo texDescriptorShadowMap =
vkTools::initializers::descriptorImageInfo(
frameBuffers.shadow.sampler,
frameBuffers.shadow.attachments[0].view,
VK_IMAGE_LAYOUT_GENERAL);
writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsFullScreen.descriptor),
// Binding 1: World space position texture
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorPosition),
// Binding 2: World space normals texture
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorNormal),
// Binding 3: Albedo texture
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
3,
&texDescriptorAlbedo),
// Binding 4: Fragment shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
4,
&uniformData.fsLights.descriptor),
// Binding 5: Shadow map
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
5,
&texDescriptorShadowMap),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Offscreen (scene)
// Model
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsOffscreen.descriptor),
// Binding 1: Color map
vkTools::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.model.colorMap.descriptor),
// Binding 2: Normal map
vkTools::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.model.normalMap.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Background
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.background));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.background,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsOffscreen.descriptor),
// Binding 1: Color map
vkTools::initializers::writeDescriptorSet(
descriptorSets.background,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.background.colorMap.descriptor),
// Binding 2: Normal map
vkTools::initializers::writeDescriptorSet(
descriptorSets.background,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.background.normalMap.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Shadow mapping
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.shadow));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.shadow,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.uboShadowGS.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Final fullscreen pass pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.deferred,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred));
// Debug display pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug));
// Offscreen pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Separate render pass
pipelineCreateInfo.renderPass = frameBuffers.deferred.renderPass;
// Separate layout
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
// Blend attachment states required for all color attachments
// This is important, as color write mask will otherwise be 0x0 and you
// won't see anything rendered to the attachment
std::array<VkPipelineColorBlendAttachmentState, 3> blendAttachmentStates =
{
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE)
};
colorBlendState.attachmentCount = static_cast<uint32_t>(blendAttachmentStates.size());
colorBlendState.pAttachments = blendAttachmentStates.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen));
// Shadow mapping pipeline
// The shadow mapping pipeline uses geometry shader instancing (invoctations layout modifier) to output
// shadow maps for multiple lights sources into the different shadiw map layers in one single render pass
std::array<VkPipelineShaderStageCreateInfo, 3> shadowStages;
shadowStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shadowStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shadowStages[2] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.geom.spv", VK_SHADER_STAGE_GEOMETRY_BIT);
pipelineCreateInfo.pStages = shadowStages.data();
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shadowStages.size());
// Shadow pass doesn't use a color attachment
colorBlendState.attachmentCount = 0;
colorBlendState.pAttachments = nullptr;
// Cull front faces
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
// Enable depth bias
rasterizationState.depthBiasEnable = VK_TRUE;
// Add depth bias to dynamic state, so we can change it at runtime
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS);
dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Reset blend attachment state
colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
pipelineCreateInfo.renderPass = frameBuffers.shadow.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shadowpass));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Fullscreen vertex shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboVS),
nullptr,
&uniformData.vsFullScreen.buffer,
&uniformData.vsFullScreen.memory,
&uniformData.vsFullScreen.descriptor);
// Deferred vertex shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboOffscreenVS),
nullptr,
&uniformData.vsOffscreen.buffer,
&uniformData.vsOffscreen.memory,
&uniformData.vsOffscreen.descriptor);
// Deferred fragment shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboFragmentLights),
nullptr,
&uniformData.fsLights.buffer,
&uniformData.fsLights.memory,
&uniformData.fsLights.descriptor);
// Shadow map vertex shader (matrices from shadow's pov)
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboShadowGS),
nullptr,
&uniformData.uboShadowGS.buffer,
&uniformData.uboShadowGS.memory,
&uniformData.uboShadowGS.descriptor);
// Init some values
uboOffscreenVS.instancePos[0] = glm::vec4(0.0f);
uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f);
uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f);
// Update
updateUniformBuffersScreen();
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
void updateUniformBuffersScreen()
{
if (debugDisplay)
{
uboVS.projection = glm::ortho(0.0f, 2.0f, 0.0f, 2.0f, -1.0f, 1.0f);
}
else
{
uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f);
}
uboVS.model = glm::mat4();
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsFullScreen.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsFullScreen.memory);
}
void updateUniformBufferDeferredMatrices()
{
uboOffscreenVS.projection = camera.matrices.perspective;
uboOffscreenVS.view = camera.matrices.view;
uboOffscreenVS.model = glm::mat4();
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsOffscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData));
memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS));
vkUnmapMemory(device, uniformData.vsOffscreen.memory);
}
// Update fragment shader light position uniform block
void updateUniformBufferDeferredLights()
{
std::vector<glm::vec4> lightPositions =
{
glm::vec4(-14.0f, -0.0f, 15.0f, 0.0f),
glm::vec4(14.0f, -4.0f, 12.0f, 0.0f),
glm::vec4(0.0f, -10.0f, 4.0f, 0.0f)
};
std::vector<glm::vec4> lightColors =
{
glm::vec4(1.0f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0f, 1.0f, 0.0f),
glm::vec4(1.0f, 1.0f, 1.0f, 0.0f),
};
std::vector<glm::vec4> lightTargets =
{
glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f),
glm::vec4(2.0f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.0f, 0.0f),
};
for (uint32_t i = 0; i < static_cast<uint32_t>(lightPositions.size()); i++)
{
Light *light = &uboFragmentLights.lights[i];
light->position = lightPositions[i];
light->color = lightColors[i];
light->target = lightTargets[i];
// mvp from light's pov (for shadows)
glm::mat4 shadowProj = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar);
glm::mat4 shadowView = glm::lookAt(glm::vec3(light->position), glm::vec3(light->target), glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 shadowModel = glm::mat4();
uboShadowGS.mvp[i] = shadowProj * shadowView * shadowModel;
light->viewMatrix = uboShadowGS.mvp[i];
}
uint8_t *pData;
memcpy(uboShadowGS.instancePos, uboOffscreenVS.instancePos, sizeof(uboOffscreenVS.instancePos));
VK_CHECK_RESULT(vkMapMemory(device, uniformData.uboShadowGS.memory, 0, sizeof(uboShadowGS), 0, (void **)&pData));
memcpy(pData, &uboShadowGS, sizeof(uboShadowGS));
vkUnmapMemory(device, uniformData.uboShadowGS.memory);
uboFragmentLights.viewPos = glm::vec4(uboOffscreenVS.view[3]);
VK_CHECK_RESULT(vkMapMemory(device, uniformData.fsLights.memory, 0, sizeof(uboFragmentLights), 0, (void **)&pData));
memcpy(pData, &uboFragmentLights, sizeof(uboFragmentLights));
vkUnmapMemory(device, uniformData.fsLights.memory);
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Offscreen rendering
// Wait for swap chain presentation to finish
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
// Signal ready with offscreen semaphore
submitInfo.pSignalSemaphores = &offscreenSemaphore;
// Submit work
// Shadow map pass
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffers.deferred;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Scene rendering
// Wait for offscreen semaphore
submitInfo.pWaitSemaphores = &offscreenSemaphore;
// Signal ready with render complete semaphpre
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
// Submit work
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
generateQuads();
loadMeshes();
setupVertexDescriptions();
deferredSetup();
shadowSetup();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
buildDeferredCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
//updateUniformBufferDeferredLights();
}
virtual void viewChanged()
{
updateUniformBufferDeferredMatrices();
}
void toggleDebugDisplay()
{
debugDisplay = !debugDisplay;
reBuildCommandBuffers();
updateUniformBuffersScreen();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case 0x70:
case GAMEPAD_BUTTON_A:
toggleDebugDisplay();
updateTextOverlay();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("Press \"Button A\" to toggle debug display", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("Press \"F1\" to toggle debug display", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#endif
// Render targets
if (debugDisplay)
{
textOverlay->addText("World space position", (float)width * 0.25f, (float)height * 0.5f - 25.0f, VulkanTextOverlay::alignCenter);
textOverlay->addText("World space normals", (float)width * 0.75f, (float)height * 0.5f - 25.0f, VulkanTextOverlay::alignCenter);
textOverlay->addText("Albedo", (float)width * 0.25f, (float)height - 25.0f, VulkanTextOverlay::alignCenter);
textOverlay->addText("Final image", (float)width * 0.75f, (float)height - 25.0f, VulkanTextOverlay::alignCenter);
}
}
};
VULKAN_EXAMPLE_MAIN()