procedural-3d-engine/shaders/slang/hdr/gbuffer.slang

135 lines
3.4 KiB
Text
Raw Normal View History

/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSInput
{
float3 Pos;
float3 Normal;
};
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 UVW;
float3 WorldPos;
float3 Normal;
float3 ViewVec;
float3 LightVec;
};
struct FSOutput
{
float4 Color0 : SV_TARGET0;
float4 Color1 : SV_TARGET1;
};
struct UBO {
float4x4 projection;
float4x4 modelview;
float4x4 inverseModelview;
float exposure;
};
ConstantBuffer<UBO> ubo;
SamplerCube samplerEnvMap;
[[SpecializationConstant]] const int objectType = 0;
[shader("vertex")]
VSOutput vertexMain(VSInput input)
{
VSOutput output;
output.UVW = input.Pos;
switch (objectType) {
case 0: // Skybox
output.WorldPos = mul((float4x3)ubo.modelview, input.Pos).xyz;
output.Pos = mul(ubo.projection, float4(output.WorldPos, 1.0));
break;
case 1: // Object
output.WorldPos = mul(ubo.modelview, float4(input.Pos, 1.0)).xyz;
output.Pos = mul(ubo.projection, mul(ubo.modelview, float4(input.Pos.xyz, 1.0)));
break;
}
output.WorldPos = mul(ubo.modelview, float4(input.Pos, 1.0)).xyz;
output.Normal = mul((float4x3)ubo.modelview, input.Normal).xyz;
float3 lightPos = float3(0.0f, -5.0f, 5.0f);
output.LightVec = lightPos.xyz - output.WorldPos.xyz;
output.ViewVec = -output.WorldPos.xyz;
return output;
}
[shader("fragment")]
FSOutput fragmentMain(VSOutput input)
{
FSOutput output;
float4 color;
float3 wcNormal;
switch (objectType) {
case 0: // Skybox
{
float3 normal = normalize(input.UVW);
color = samplerEnvMap.Sample(normal);
}
break;
case 1: // Reflect
{
float3 wViewVec = mul((float4x3)ubo.inverseModelview, normalize(input.ViewVec)).xyz;
float3 normal = normalize(input.Normal);
float3 wNormal = mul((float4x3)ubo.inverseModelview, normal).xyz;
float NdotL = max(dot(normal, input.LightVec), 0.0);
float3 eyeDir = normalize(input.ViewVec);
float3 halfVec = normalize(input.LightVec + eyeDir);
float NdotH = max(dot(normal, halfVec), 0.0);
float NdotV = max(dot(normal, eyeDir), 0.0);
float VdotH = max(dot(eyeDir, halfVec), 0.0);
// Geometric attenuation
float NH2 = 2.0 * NdotH;
float g1 = (NH2 * NdotV) / VdotH;
float g2 = (NH2 * NdotL) / VdotH;
float geoAtt = min(1.0, min(g1, g2));
const float F0 = 0.6;
const float k = 0.2;
// Fresnel (schlick approximation)
float fresnel = pow(1.0 - VdotH, 5.0);
fresnel *= (1.0 - F0);
fresnel += F0;
2025-06-02 22:09:03 +02:00
float spec = (fresnel * geoAtt) / (NdotV * NdotL * float.getPi());
color = samplerEnvMap.Sample(reflect(-wViewVec, wNormal));
color = float4(color.rgb * NdotL * (k + spec * (1.0 - k)), 1.0);
}
break;
case 2: // Refract
{
float3 wViewVec = mul((float4x3)ubo.inverseModelview, normalize(input.ViewVec)).xyz;
float3 wNormal = mul((float4x3)ubo.inverseModelview, input.Normal).xyz;
color = samplerEnvMap.Sample(refract(-wViewVec, wNormal, 1.0/1.6));
}
break;
}
// Color with manual exposure into attachment 0
output.Color0.rgb = float3(1.0, 1.0, 1.0) - exp(-color.rgb * ubo.exposure);
// Bright parts for bloom into attachment 1
float l = dot(output.Color0.rgb, float3(0.2126, 0.7152, 0.0722));
float threshold = 0.75;
output.Color1.rgb = (l > threshold) ? output.Color0.rgb : float3(0.0, 0.0, 0.0);
output.Color1.a = 1.0;
return output;
}