procedural-3d-engine/dynamicuniformbuffer/dynamicuniformbuffer.cpp

543 lines
18 KiB
C++
Raw Normal View History

2016-12-22 20:16:44 +01:00
/*
* Vulkan Example - Dynamic uniform buffers
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
* Summary:
* Demonstrates the use of dynamic uniform buffers.
*
* Instead of using one uniform buffer per-object, this example allocates one big uniform buffer
* with respect to the alignment reported by the device via minUniformBufferOffsetAlignment that
* contains all matrices for the objects in the scene.
*
* The used descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC then allows to set a dynamic
* offset used to pass data from the single uniform buffer to the connected shader binding point.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <array>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "vulkandevice.hpp"
#include "vulkanbuffer.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
#define OBJECT_INSTANCES 125
// Vertex layout for this example
struct Vertex {
float pos[3];
float color[3];
};
// Wrapper functions for aligned memory allocation
// There is currently no standard for this in C++ that works across all platforms and vendors, so we abstract this
void* alignedAlloc(size_t size, size_t alignment)
{
void *data = nullptr;
#ifdef _MSC_VER
data = _aligned_malloc(size, alignment);
#else
int res = posix_memalign(&data, alignment, size);
if (res != 0)
data = nullptr;
#endif
return data;
}
void alignedFree(void* data)
{
#ifdef _MSC_VER
_aligned_free(data);
#else
free(data);
#endif
}
2016-12-22 20:16:44 +01:00
class VulkanExample : public VulkanExampleBase
{
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
vk::Buffer vertexBuffer;
vk::Buffer indexBuffer;
uint32_t indexCount;
struct {
vk::Buffer view;
vk::Buffer dynamic;
} uniformBuffers;
struct {
glm::mat4 projection;
glm::mat4 view;
} uboVS;
// Store random per-object rotations
glm::vec3 rotations[OBJECT_INSTANCES];
glm::vec3 rotationSpeeds[OBJECT_INSTANCES];
// One big uniform buffer that contains all matrices
// Note that we need to manually allocate the data to cope for GPU-specific uniform buffer offset alignments
struct UboDataDynamic {
glm::mat4 *model = nullptr;
} uboDataDynamic;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
float animationTimer = 0.0f;
size_t dynamicAlignment;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Vulkan Example - Dynamic uniform buffers";
enableTextOverlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -30.0f));
camera.setRotation(glm::vec3(0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
if (uboDataDynamic.model) {
alignedFree(uboDataDynamic.model);
2016-12-22 20:16:44 +01:00
}
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBuffers.view.destroy();
uniformBuffers.dynamic.destroy();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
// Render multiple objects using different model matrices by dynamically offsetting into one uniform buffer
for (uint32_t j = 0; j < OBJECT_INSTANCES; j++)
{
// One dynamic offset per dynamic descriptor to offset into the ubo containing all model matrices
uint32_t dynamicOffset = j * static_cast<uint32_t>(dynamicAlignment);
// Bind the descriptor set for rendering a mesh using the dynamic offset
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 1, &dynamicOffset);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void generateTriangle()
{
// Setup vertices indices for a colored cube
std::vector<Vertex> vertices = {
{ { -1.0f, -1.0f, 1.0f },{ 1.0f, 0.0f, 0.0f } },
{ { 1.0f, -1.0f, 1.0f },{ 0.0f, 1.0f, 0.0f } },
{ { 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } },
{ { -1.0f, -1.0f, -1.0f },{ 1.0f, 0.0f, 0.0f } },
{ { 1.0f, -1.0f, -1.0f },{ 0.0f, 1.0f, 0.0f } },
{ { 1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 0.0f } },
};
std::vector<uint32_t> indices = {
0,1,2, 2,3,0, 1,5,6, 6,2,1, 7,6,5, 5,4,7, 4,0,3, 3,7,4, 4,5,1, 1,0,4, 3,2,6, 6,7,3,
};
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the gpu memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions = {
vkTools::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
// Attribute descriptions
vertices.attributeDescriptions = {
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), // Location 0 : Position
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, color)), // Location 1 : Color
};
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
vkTools::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vkTools::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_SHADER_STAGE_VERTEX_BIT, 1),
vkTools::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Projection/View matrix uniform buffer
vkTools::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.view.descriptor),
// Binding 1 : Instance matrix as dynamic uniform buffer
vkTools::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, &uniformBuffers.dynamic.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/dynamicuniformbuffer/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/dynamicuniformbuffer/base.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Allocate data for the dynamic uniform buffer object
// We allocate this manually as the alignment of the offset differs between GPUs
// Calculate required alignment depending on device limits
uint32_t uboAlignment = vulkanDevice->properties.limits.minUniformBufferOffsetAlignment;
dynamicAlignment = (sizeof(glm::mat4) / uboAlignment) * uboAlignment + ((sizeof(glm::mat4) % uboAlignment) > 0 ? uboAlignment : 0);
size_t bufferSize = OBJECT_INSTANCES * dynamicAlignment;
uboDataDynamic.model = (glm::mat4*)alignedAlloc(bufferSize, dynamicAlignment);
assert(uboDataDynamic.model);
2016-12-22 20:16:44 +01:00
std::cout << "minUniformBufferOffsetAlignment = " << uboAlignment << std::endl;
std::cout << "dynamicAlignment = " << dynamicAlignment << std::endl;
// Vertex shader uniform buffer block
// Static shared uniform buffer object with projection and view matrix
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.view,
sizeof(uboVS)));
// Uniform buffer object with per-object matrices
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
&uniformBuffers.dynamic,
bufferSize));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.view.map());
VK_CHECK_RESULT(uniformBuffers.dynamic.map());
// Prepare per-object matrices with offsets and random rotations
std::mt19937 rndGen(static_cast<uint32_t>(time(0)));
std::normal_distribution<float> rndDist(-1.0f, 1.0f);
for (uint32_t i = 0; i < OBJECT_INSTANCES; i++)
{
rotations[i] = glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen)) * 2.0f * (float)M_PI;
rotationSpeeds[i] = glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen));
}
updateUniformBuffers();
updateDynamicUniformBuffer(true);
}
void updateUniformBuffers()
{
// Fixed ubo with projection and view matrices
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
memcpy(uniformBuffers.view.mapped, &uboVS, sizeof(uboVS));
}
void updateDynamicUniformBuffer(bool force = false)
{
// Update at max. 60 fps
animationTimer += frameTimer;
if ((animationTimer <= 1.0f / 60.0f) && (!force)) {
return;
}
// Dynamic ubo with per-object model matrices indexed by offsets in the command buffer
uint32_t dim = pow(OBJECT_INSTANCES, (1.0 / 3.0));
glm::vec3 offset(5.0f);
for (uint32_t x = 0; x < dim; x++)
{
for (uint32_t y = 0; y < dim; y++)
{
for (uint32_t z = 0; z < dim; z++)
{
uint32_t index = x * dim * dim + y * dim + z;
// Aligned offset
glm::mat4* modelMat = (glm::mat4*)(((uint64_t)uboDataDynamic.model + (index * dynamicAlignment)));
// Update rotations
rotations[index] += animationTimer * rotationSpeeds[index];
// Update matrices
glm::vec3 pos = glm::vec3(-((dim * offset.x) / 2.0f) + offset.x / 2.0f + x * offset.x, -((dim * offset.y) / 2.0f) + offset.y / 2.0f + y * offset.y, -((dim * offset.z) / 2.0f) + offset.z / 2.0f + z * offset.z);
*modelMat = glm::translate(glm::mat4(), pos);
*modelMat = glm::rotate(*modelMat, rotations[index].x, glm::vec3(1.0f, 1.0f, 0.0f));
*modelMat = glm::rotate(*modelMat, rotations[index].y, glm::vec3(0.0f, 1.0f, 0.0f));
*modelMat = glm::rotate(*modelMat, rotations[index].z, glm::vec3(0.0f, 0.0f, 1.0f));
}
}
}
animationTimer = 0.0f;
memcpy(uniformBuffers.dynamic.mapped, uboDataDynamic.model, uniformBuffers.dynamic.size);
// Flush to make changes visible to the host
VkMappedMemoryRange memoryRange = vkTools::initializers::mappedMemoryRange();
memoryRange.memory = uniformBuffers.dynamic.memory;
memoryRange.size = sizeof(uboDataDynamic);
vkFlushMappedMemoryRanges(device, 1, &memoryRange);
}
void prepare()
{
VulkanExampleBase::prepare();
generateTriangle();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused)
updateDynamicUniformBuffer();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()