procedural-3d-engine/subpasses/subpasses.cpp

941 lines
34 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Using subpasses for G-Buffer compositing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
#define NUM_LIGHTS 32
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vkMeshLoader::MeshBuffer scene;
} meshes;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
} uboVS, uboOffscreenVS;
struct Light {
glm::vec4 position;
glm::vec3 color;
float radius;
};
struct {
glm::vec4 viewPos;
Light lights[NUM_LIGHTS];
} uboFragmentLights;
struct {
vkTools::UniformData vsOffscreen;
vkTools::UniformData fsLights;
} uniformData;
struct {
VkPipeline offscreen;
} pipelines;
struct {
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet scene;
} descriptorSets;
VkDescriptorSetLayout descriptorSetLayout;
// todo
struct {
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
} composition;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
VkFormat format;
};
struct Attachments {
FrameBufferAttachment position, normal, albedo;
} attachments;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
enableTextOverlay = false;
title = "Vulkan Example - Subpasses";
camera.type = Camera::CameraType::firstperson;
camera.movementSpeed = 5.0f;
#ifndef __ANDROID__
camera.rotationSpeed = 0.25f;
#endif
camera.position = { 9.5f, 4.5f, -5.8f };
camera.setRotation(glm::vec3(-9.5f, 53.25f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Frame buffer
// Color attachments
vkDestroyImageView(device, attachments.position.view, nullptr);
vkDestroyImage(device, attachments.position.image, nullptr);
vkFreeMemory(device, attachments.position.mem, nullptr);
vkDestroyImageView(device, attachments.normal.view, nullptr);
vkDestroyImage(device, attachments.normal.image, nullptr);
vkFreeMemory(device, attachments.normal.mem, nullptr);
vkDestroyImageView(device, attachments.albedo.view, nullptr);
vkDestroyImage(device, attachments.albedo.image, nullptr);
vkFreeMemory(device, attachments.albedo.mem, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.scene);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformData.vsOffscreen);
vkTools::destroyUniformData(device, &uniformData.fsLights);
}
// Create a frame buffer attachment
void createAttachment(VkFormat format, VkImageUsageFlags usage, FrameBufferAttachment *attachment)
{
VkImageAspectFlags aspectMask = 0;
VkImageLayout imageLayout;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = width;
image.extent.height = height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = usage | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; // VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT flag is required for input attachments;
image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0));
VkImageViewCreateInfo imageView = vkTools::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageView.format = format;
imageView.subresourceRange = {};
imageView.subresourceRange.aspectMask = aspectMask;
imageView.subresourceRange.baseMipLevel = 0;
imageView.subresourceRange.levelCount = 1;
imageView.subresourceRange.baseArrayLayer = 0;
imageView.subresourceRange.layerCount = 1;
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view));
}
// Create color attachments for the G-Buffer components
void createGBufferAttachments()
{
createAttachment(VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &attachments.position); // (World space) Positions
createAttachment(VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &attachments.normal); // (World space) Normals
createAttachment(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &attachments.albedo); // Albedo (color)
}
// Override framebuffer setup from base class
// Deferred components will be used as frame buffer attachments
void setupFrameBuffer()
{
VkImageView attachments[5];
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.pNext = NULL;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = 5;
frameBufferCreateInfo.pAttachments = attachments;
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
attachments[1] = this->attachments.position.view;
attachments[2] = this->attachments.normal.view;
attachments[3] = this->attachments.albedo.view;
attachments[4] = depthStencil.view;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}
// Override render pass setup from base class
void setupRenderPass()
{
createGBufferAttachments();
std::array<VkAttachmentDescription, 5> attachments{};
// Color attachment
attachments[0].format = colorformat;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// Deferred attachments
// Position
attachments[1].format = this->attachments.position.format;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Normals
attachments[2].format = this->attachments.normal.format;
attachments[2].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[2].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Albedo
attachments[3].format = this->attachments.albedo.format;
attachments[3].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[3].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[3].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[3].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[3].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[3].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[3].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Depth attachment
attachments[4].format = depthFormat;
attachments[4].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[4].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[4].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[4].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[4].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[4].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[4].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
std::array<VkSubpassDescription,2> subpassDescriptions{};
// First subpass: Fill G-Buffer components
VkAttachmentReference colorReferences[4];
colorReferences[0] = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
colorReferences[1] = { 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
colorReferences[2] = { 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
colorReferences[3] = { 3, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference depthReference = { 4, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL };
subpassDescriptions[0].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescriptions[0].colorAttachmentCount = 4;
subpassDescriptions[0].pColorAttachments = colorReferences;
subpassDescriptions[0].pDepthStencilAttachment = &depthReference;
// Second subpass: Final composition (using G-Buffer components)
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference inputReferences[3];
inputReferences[0] = { 1, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL };
inputReferences[1] = { 2, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL };
inputReferences[2] = { 3, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL };
subpassDescriptions[1].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescriptions[1].colorAttachmentCount = 1;
subpassDescriptions[1].pColorAttachments = &colorReference;
subpassDescriptions[1].pDepthStencilAttachment = &depthReference;
subpassDescriptions[1].inputAttachmentCount = 3;
subpassDescriptions[1].pInputAttachments = inputReferences;
// Subpass dependencies for layout transitions
std::array<VkSubpassDependency, 3> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// This dependency transitions the input attachment from color attachment to shader read
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = 1;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[2].srcSubpass = 0;
dependencies[2].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[2].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[2].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[2].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[2].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[2].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = static_cast<uint32_t>(subpassDescriptions.size());
renderPassInfo.pSubpasses = subpassDescriptions.data();
renderPassInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass));
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[5];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[3].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[4].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 5;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// First sub pass
// Renders the components of the scene to the G-Buffer atttachments
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.scene.indexCount, 1, 0, 0, 0);
// Second sub pass
// This subpass will use the G-Buffer components that have been filled in the first subpass as input attachment for the final compositing
vkCmdNextSubpass(drawCmdBuffers[i], VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, composition.pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, composition.pipelineLayout, 0, 1, &composition.descriptorSet, 0, NULL);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
loadMesh(getAssetPath() + "models/samplescene.dae", &meshes.scene, vertexLayout, 0.25f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(3);
// Location 0: Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1: Color
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2: Normal
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 9),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 3),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
4);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// Deferred shading layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
// Offscreen (scene) rendering pipeline layout
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
}
void setupDescriptorSet()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
// Background
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsOffscreen.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Final fullscreen pass pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.offscreen,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
std::array<VkPipelineColorBlendAttachmentState, 4> blendAttachmentStates = {
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE)
};
colorBlendState.attachmentCount = static_cast<uint32_t>(blendAttachmentStates.size());
colorBlendState.pAttachments = blendAttachmentStates.data();
// Offscreen pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/subpasses/gbuffer.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/subpasses/gbuffer.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen));
}
// todo: comment
void prepareCompositionPass()
{
// Descriptor set layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0: Position input attachment
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_SHADER_STAGE_FRAGMENT_BIT,
0),
// Binding 1: Normal input attachment
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2: Albedo input attachment
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// Binding 3: Light positions
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &composition.descriptorSetLayout));
// Pipeline layout
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(&composition.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &composition.pipelineLayout));
// Descriptor sets
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(descriptorPool, &composition.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &composition.descriptorSet));
// Image descriptors for the offscreen color attachments
VkDescriptorImageInfo texDescriptorPosition =
vkTools::initializers::descriptorImageInfo(
nullptr,
attachments.position.view,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
VkDescriptorImageInfo texDescriptorNormal =
vkTools::initializers::descriptorImageInfo(
nullptr,
attachments.normal.view,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
VkDescriptorImageInfo texDescriptorAlbedo =
vkTools::initializers::descriptorImageInfo(
nullptr,
attachments.albedo.view,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Position texture target
vkTools::initializers::writeDescriptorSet(
composition.descriptorSet,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
0,
&texDescriptorPosition),
// Binding 1: Normals texture target
vkTools::initializers::writeDescriptorSet(
composition.descriptorSet,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
1,
&texDescriptorNormal),
// Binding 2: Albedo texture target
vkTools::initializers::writeDescriptorSet(
composition.descriptorSet,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
2,
&texDescriptorAlbedo),
// Binding 4: Fragment shader lights
vkTools::initializers::writeDescriptorSet(
composition.descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
3,
&uniformData.fsLights.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
std::array<VkPipelineColorBlendAttachmentState, 4> blendAttachmentStates = {
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
};
colorBlendState.attachmentCount = static_cast<uint32_t>(blendAttachmentStates.size());
colorBlendState.pAttachments = blendAttachmentStates.data();
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/subpasses/composition.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/subpasses/composition.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use specialization constants to pass number of lights to the shader
VkSpecializationMapEntry specializationEntry{};
specializationEntry.constantID = 0;
specializationEntry.offset = 0;
specializationEntry.size = sizeof(uint32_t);
uint32_t specializationData = NUM_LIGHTS;
VkSpecializationInfo specializationInfo;
specializationInfo.mapEntryCount = 1;
specializationInfo.pMapEntries = &specializationEntry;
specializationInfo.dataSize = sizeof(specializationData);
specializationInfo.pData = &specializationData;
shaderStages[1].pSpecializationInfo = &specializationInfo;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(composition.pipelineLayout, renderPass, 0);
VkPipelineVertexInputStateCreateInfo emptyInputState{};
emptyInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
pipelineCreateInfo.pVertexInputState = &emptyInputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &composition.pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Deferred vertex shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboOffscreenVS),
nullptr,
&uniformData.vsOffscreen.buffer,
&uniformData.vsOffscreen.memory,
&uniformData.vsOffscreen.descriptor);
// Deferred fragment shader
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboFragmentLights),
nullptr,
&uniformData.fsLights.buffer,
&uniformData.fsLights.memory,
&uniformData.fsLights.descriptor);
// Update
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
void updateUniformBufferDeferredMatrices()
{
uboOffscreenVS.projection = camera.matrices.perspective;
uboOffscreenVS.view = camera.matrices.view;
uboOffscreenVS.model = glm::mat4();
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsOffscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData));
memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS));
vkUnmapMemory(device, uniformData.vsOffscreen.memory);
}
void initLights()
{
std::vector<glm::vec3> colors =
{
glm::vec3(1.0f, 1.0f, 1.0f),
glm::vec3(1.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.0f),
glm::vec3(0.0f, 0.0f, 1.0f),
glm::vec3(1.0f, 1.0f, 0.0f),
};
std::mt19937 rndGen((unsigned)time(NULL));
std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f);
std::uniform_int_distribution<uint32_t> rndCol(0, colors.size()-1);
for (auto& light : uboFragmentLights.lights)
{
light.position = glm::vec4(rndDist(rndGen) * 6.0f, 0.25f + std::abs(rndDist(rndGen)) * 4.0f, rndDist(rndGen) * 6.0f, 1.0f);
light.color = colors[rndCol(rndGen)];
light.radius = 1.0f + std::abs(rndDist(rndGen));
}
}
// Update fragment shader light position uniform block
void updateUniformBufferDeferredLights()
{
// Current view position
uboFragmentLights.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.fsLights.memory, 0, sizeof(uboFragmentLights), 0, (void **)&pData));
memcpy(pData, &uboFragmentLights, sizeof(uboFragmentLights));
vkUnmapMemory(device, uniformData.fsLights.memory);
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
setupVertexDescriptions();
initLights();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompositionPass();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_F1:
case GAMEPAD_BUTTON_A:
initLights();
updateUniformBufferDeferredLights();
break;
}
}
};
VULKAN_EXAMPLE_MAIN()