procedural-3d-engine/computeshader/computeshader.cpp

911 lines
28 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Vulkan Example - Compute shader image processing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
2016-02-16 15:07:25 +01:00
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
};
class VulkanExample : public VulkanExampleBase
{
private:
vkTools::VulkanTexture textureColorMap;
vkTools::VulkanTexture textureComputeTarget;
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer quad;
} meshes;
vkTools::UniformData uniformDataVS;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVS;
struct {
VkPipeline postCompute;
// Compute pipelines are separated from
// graphics pipelines in Vulkan
std::vector<VkPipeline> compute;
2016-05-14 15:35:29 +02:00
uint32_t computeIndex = 1;
2016-02-16 15:07:25 +01:00
} pipelines;
int vertexBufferSize;
VkQueue computeQueue;
VkCommandBuffer computeCmdBuffer;
VkPipelineLayout computePipelineLayout;
VkDescriptorSet computeDescriptorSet;
VkDescriptorSetLayout computeDescriptorSetLayout;
VkDescriptorPool computeDescriptorPool;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSetPostCompute, descriptorSetBaseImage;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
width = 1280;
height = 720;
zoom = -2.0f;
title = "Vulkan Example - Compute shader image processing";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.postCompute, nullptr);
for (auto& pipeline : pipelines.compute)
{
vkDestroyPipeline(device, pipeline, nullptr);
}
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
vkTools::destroyUniformData(device, &uniformDataVS);
vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer);
2016-02-16 15:07:25 +01:00
textureLoader->destroyTexture(textureColorMap);
textureLoader->destroyTexture(textureComputeTarget);
2016-02-16 15:07:25 +01:00
}
// Prepare a texture target that is used to store compute shader calculations
2016-02-16 15:07:25 +01:00
void prepareTextureTarget(vkTools::VulkanTexture *tex, uint32_t width, uint32_t height, VkFormat format)
{
VkFormatProperties formatProperties;
VkResult err;
// Get device properties for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if requested image format supports image storage operations
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
2016-02-16 15:07:25 +01:00
// Prepare blit target texture
tex->width = width;
tex->height = height;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image will be sampled in the fragment shader and used as storage target in the compute shader
imageCreateInfo.usage =
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT;
2016-02-16 15:07:25 +01:00
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image);
assert(!err);
vkGetImageMemoryRequirements(device, tex->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory);
assert(!err);
err = vkBindImageMemory(device, tex->image, tex->deviceMemory, 0);
assert(!err);
tex->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(setupCmdBuffer, tex->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, tex->imageLayout);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &tex->sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = tex->image;
err = vkCreateImageView(device, &view, nullptr, &tex->view);
assert(!err);
}
void loadTextures()
{
textureLoader->loadTexture(
2016-05-14 15:35:29 +02:00
getAssetPath() + "textures/vulkan_space_rgba8.ktx",
2016-02-16 15:07:25 +01:00
VK_FORMAT_R8G8B8A8_UNORM,
2016-03-16 21:27:56 +01:00
&textureColorMap,
false,
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT);
2016-02-16 15:07:25 +01:00
}
void buildCommandBuffers()
{
// Destroy command buffers if already present
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
// Image memory barrier to make sure that compute
// shader writes are finished before sampling
// from the texture
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.pNext = NULL;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = textureComputeTarget.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width * 0.5f,
(float)height,
0.0f,
1.0f
);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0
);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Left (pre compute)
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSetBaseImage, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.postCompute);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
// Right (post compute)
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSetPostCompute, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.postCompute);
viewport.x = (float)width / 2.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
2016-02-16 15:07:25 +01:00
VkResult err = vkBeginCommandBuffer(computeCmdBuffer, &cmdBufInfo);
assert(!err);
2016-02-16 15:07:25 +01:00
vkCmdBindPipeline(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelines.compute[pipelines.computeIndex]);
vkCmdBindDescriptorSets(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &computeDescriptorSet, 0, 0);
vkCmdDispatch(computeCmdBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1);
vkEndCommandBuffer(computeCmdBuffer);
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
2016-02-16 15:07:25 +01:00
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
2016-02-16 15:07:25 +01:00
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
2016-02-16 15:07:25 +01:00
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
2016-02-16 15:07:25 +01:00
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
2016-02-16 15:07:25 +01:00
err = vkQueueWaitIdle(queue);
assert(!err);
// Compute
VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &computeCmdBuffer;
err = vkQueueSubmit(computeQueue, 1, &computeSubmitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(computeQueue);
assert(!err);
}
// Setup vertices for a single uv-mapped quad
void generateQuad()
{
#define dim 1.0f
std::vector<Vertex> vertexBuffer =
{
{ { dim, dim, 0.0f }, { 1.0f, 1.0f } },
{ { -dim, dim, 0.0f }, { 0.0f, 1.0f } },
{ { -dim, -dim, 0.0f }, { 0.0f, 0.0f } },
{ { dim, -dim, 0.0f }, { 1.0f, 0.0f } }
};
#undef dim
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
meshes.quad.indexCount = indexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(2);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Assign to vertex buffer
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
// Graphics pipeline uses image samplers for display
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
// Compute pipeline uses storage images image loads and stores
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 2),
2016-02-16 15:07:25 +01:00
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSetPostCompute);
assert(!vkRes);
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
textureComputeTarget.sampler,
textureComputeTarget.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSetPostCompute,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataVS.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSetPostCompute,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Base image (before compute post process)
allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSetBaseImage);
assert(!vkRes);
VkDescriptorImageInfo texDescriptorBaseImage =
vkTools::initializers::descriptorImageInfo(
textureColorMap.sampler,
textureColorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> baseImageWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSetBaseImage,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataVS.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSetBaseImage,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorBaseImage)
};
vkUpdateDescriptorSets(device, baseImageWriteDescriptorSets.size(), baseImageWriteDescriptorSets.data(), 0, NULL);
}
// Create a separate command buffer for compute commands
void createComputeCommandBuffer()
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &computeCmdBuffer);
assert(!vkRes);
}
void preparePipelines()
{
VkResult err;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/computeshader/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/computeshader/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
2016-02-16 15:07:25 +01:00
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.postCompute);
assert(!err);
}
void prepareCompute()
{
// Create compute pipeline
// Compute pipelines are created separate from graphics pipelines
// even if they use the same queue
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Sampled image (read)
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
2016-02-16 15:07:25 +01:00
VK_SHADER_STAGE_COMPUTE_BIT,
0),
// Binding 1 : Sampled image (write)
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
2016-02-16 15:07:25 +01:00
VK_SHADER_STAGE_COMPUTE_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(
device,
&descriptorLayout,
nullptr,
&computeDescriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&computeDescriptorSetLayout,
1);
err = vkCreatePipelineLayout(
device,
&pPipelineLayoutCreateInfo,
nullptr,
&computePipelineLayout);
assert(!err);
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&computeDescriptorSetLayout,
1);
err = vkAllocateDescriptorSets(device, &allocInfo, &computeDescriptorSet);
assert(!err);
std::vector<VkDescriptorImageInfo> computeTexDescriptors =
{
vkTools::initializers::descriptorImageInfo(
VK_NULL_HANDLE,
2016-02-16 15:07:25 +01:00
textureColorMap.view,
VK_IMAGE_LAYOUT_GENERAL),
vkTools::initializers::descriptorImageInfo(
VK_NULL_HANDLE,
2016-02-16 15:07:25 +01:00
textureComputeTarget.view,
VK_IMAGE_LAYOUT_GENERAL)
};
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
{
// Binding 0 : Sampled image (read)
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
2016-02-16 15:07:25 +01:00
0,
&computeTexDescriptors[0]),
// Binding 1 : Sampled image (write)
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
2016-02-16 15:07:25 +01:00
1,
&computeTexDescriptors[1])
};
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
// Create compute shader pipelines
VkComputePipelineCreateInfo computePipelineCreateInfo =
vkTools::initializers::computePipelineCreateInfo(
computePipelineLayout,
0);
std::vector<std::string> shaderNames = { "edgedetect", "emboss", "sharpen" };
for (auto& shaderName : shaderNames)
{
std::string fileName = getAssetPath() + "shaders/computeshader/" + shaderName + ".comp.spv";
2016-02-16 15:07:25 +01:00
computePipelineCreateInfo.stage = loadShader(fileName.c_str(), VK_SHADER_STAGE_COMPUTE_BIT);
VkPipeline pipeline;
err = vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipeline);
assert(!err);
pipelines.compute.push_back(pipeline);
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformDataVS.buffer,
&uniformDataVS.memory,
&uniformDataVS.descriptor);
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
glm::mat4 viewMatrix = glm::mat4();
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width*0.5f / (float)height, 0.1f, 256.0f);
2016-02-16 15:07:25 +01:00
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
uboVS.model = glm::mat4();
uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
2016-02-16 15:07:25 +01:00
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformDataVS.memory);
}
// Find and create a compute capable device queue
void getComputeQueue()
{
uint32_t queueIndex = 0;
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps;
queueProps.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
for (queueIndex = 0; queueIndex < queueCount; queueIndex++)
{
if (queueProps[queueIndex].queueFlags & VK_QUEUE_COMPUTE_BIT)
break;
}
assert(queueIndex < queueCount);
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.queueFamilyIndex = queueIndex;
queueCreateInfo.queueCount = 1;
vkGetDeviceQueue(device, queueIndex, 0, &computeQueue);
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
generateQuad();
getComputeQueue();
createComputeCommandBuffer();
setupVertexDescriptions();
prepareUniformBuffers();
prepareTextureTarget(&textureComputeTarget, textureColorMap.width, textureColorMap.height, VK_FORMAT_R8G8B8A8_UNORM);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompute();
buildCommandBuffers();
buildComputeCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
updateUniformBuffers();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void switchComputePipeline(int32_t dir)
{
if ((dir < 0) && (pipelines.computeIndex > 0))
{
pipelines.computeIndex--;
buildComputeCommandBuffer();
2016-02-16 15:07:25 +01:00
}
if ((dir > 0) && (pipelines.computeIndex < pipelines.compute.size()-1))
{
pipelines.computeIndex++;
buildComputeCommandBuffer();
2016-02-16 15:07:25 +01:00
}
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
2016-02-16 15:07:25 +01:00
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
switch (wParam)
2016-02-16 15:07:25 +01:00
{
case VK_ADD:
case VK_SUBTRACT:
vulkanExample->switchComputePipeline((wParam == VK_ADD) ? 1 : -1);
break;
2016-02-16 15:07:25 +01:00
}
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
2016-02-16 15:07:25 +01:00
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
2016-02-16 15:07:25 +01:00
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
2016-02-16 15:07:25 +01:00
vulkanExample = new VulkanExample();
#if defined(_WIN32)
2016-02-16 15:07:25 +01:00
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
2016-02-16 15:07:25 +01:00
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
2016-02-16 15:07:25 +01:00
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
return 0;
#endif
2016-02-16 15:07:25 +01:00
}