procedural-3d-engine/examples/texture3d/texture3d.cpp

803 lines
26 KiB
C++
Raw Normal View History

/*
* Vulkan Example - 3D texture loading (and generation using perlin noise) example
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <random>
#include <numeric>
#include <ctime>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
float normal[3];
};
// Translation of Ken Perlin's JAVA implementation (http://mrl.nyu.edu/~perlin/noise/)
template <typename T>
class PerlinNoise
{
private:
uint32_t permutations[512];
T fade(T t)
{
return t * t * t * (t * (t * (T)6 - (T)15) + (T)10);
}
T lerp(T t, T a, T b)
{
return a + t * (b - a);
}
T grad(int hash, T x, T y, T z)
{
// Convert LO 4 bits of hash code into 12 gradient directions
int h = hash & 15;
T u = h < 8 ? x : y;
T v = h < 4 ? y : h == 12 || h == 14 ? x : z;
return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v);
}
public:
PerlinNoise()
{
// Generate random lookup for permutations containing all numbers from 0..255
std::vector<uint8_t> plookup;
plookup.resize(256);
std::iota(plookup.begin(), plookup.end(), 0);
std::default_random_engine rndEngine(std::random_device{}());
std::shuffle(plookup.begin(), plookup.end(), rndEngine);
for (uint32_t i = 0; i < 256; i++)
{
permutations[i] = permutations[256 + i] = plookup[i];
}
}
T noise(T x, T y, T z)
{
// Find unit cube that contains point
int32_t X = (int32_t)floor(x) & 255;
int32_t Y = (int32_t)floor(y) & 255;
int32_t Z = (int32_t)floor(z) & 255;
// Find relative x,y,z of point in cube
x -= floor(x);
y -= floor(y);
z -= floor(z);
// Compute fade curves for each of x,y,z
T u = fade(x);
T v = fade(y);
T w = fade(z);
// Hash coordinates of the 8 cube corners
uint32_t A = permutations[X] + Y;
uint32_t AA = permutations[A] + Z;
uint32_t AB = permutations[A + 1] + Z;
uint32_t B = permutations[X + 1] + Y;
uint32_t BA = permutations[B] + Z;
uint32_t BB = permutations[B + 1] + Z;
// And add blended results for 8 corners of the cube;
T res = lerp(w, lerp(v,
lerp(u, grad(permutations[AA], x, y, z), grad(permutations[BA], x - 1, y, z)), lerp(u, grad(permutations[AB], x, y - 1, z), grad(permutations[BB], x - 1, y - 1, z))),
lerp(v, lerp(u, grad(permutations[AA + 1], x, y, z - 1), grad(permutations[BA + 1], x - 1, y, z - 1)), lerp(u, grad(permutations[AB + 1], x, y - 1, z - 1), grad(permutations[BB + 1], x - 1, y - 1, z - 1))));
return res;
}
};
// Fractal noise generator based on perlin noise above
template <typename T>
class FractalNoise
{
private:
PerlinNoise<float> perlinNoise;
uint32_t octaves;
T frequency;
T amplitude;
T persistence;
public:
FractalNoise(const PerlinNoise<T> &perlinNoise)
{
this->perlinNoise = perlinNoise;
octaves = 6;
persistence = (T)0.5;
}
T noise(T x, T y, T z)
{
T sum = 0;
T frequency = (T)1;
T amplitude = (T)1;
T max = (T)0;
2020-01-18 10:02:55 +01:00
for (uint32_t i = 0; i < octaves; i++)
{
sum += perlinNoise.noise(x * frequency, y * frequency, z * frequency) * amplitude;
max += amplitude;
amplitude *= persistence;
frequency *= (T)2;
}
sum = sum / max;
return (sum + (T)1.0) / (T)2.0;
}
};
class VulkanExample : public VulkanExampleBase
{
public:
// Contains all Vulkan objects that are required to store and use a 3D texture
struct Texture {
VkSampler sampler = VK_NULL_HANDLE;
VkImage image = VK_NULL_HANDLE;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory = VK_NULL_HANDLE;
VkImageView view = VK_NULL_HANDLE;
VkDescriptorImageInfo descriptor;
VkFormat format;
uint32_t width, height, depth;
uint32_t mipLevels;
} texture;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> inputBinding;
std::vector<VkVertexInputAttributeDescription> inputAttributes;
} vertices;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer uniformBufferVS;
struct UboVS {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 viewPos;
float depth = 0.0f;
} uboVS;
struct {
VkPipeline solid;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "3D textures";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
settings.overlay = true;
srand((unsigned int)time(NULL));
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
destroyTextureImage(texture);
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBufferVS.destroy();
}
// Prepare all Vulkan resources for the 3D texture (including descriptors)
// Does not fill the texture with data
void prepareNoiseTexture(uint32_t width, uint32_t height, uint32_t depth)
{
// A 3D texture is described as width x height x depth
texture.width = width;
texture.height = height;
texture.depth = depth;
texture.mipLevels = 1;
texture.format = VK_FORMAT_R8_UNORM;
// Format support check
// 3D texture support in Vulkan is mandatory (in contrast to OpenGL) so no need to check if it's supported
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, texture.format, &formatProperties);
// Check if format supports transfer
if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT))
{
std::cout << "Error: Device does not support flag TRANSFER_DST for selected texture format!" << std::endl;
return;
}
// Check if GPU supports requested 3D texture dimensions
uint32_t maxImageDimension3D(vulkanDevice->properties.limits.maxImageDimension3D);
if (width > maxImageDimension3D || height > maxImageDimension3D || depth > maxImageDimension3D)
{
std::cout << "Error: Requested texture dimensions is greater than supported 3D texture dimension!" << std::endl;
return;
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_3D;
imageCreateInfo.format = texture.format;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.extent.width = texture.width;
imageCreateInfo.extent.height = texture.height;
imageCreateInfo.extent.depth = texture.depth;
// Set initial layout of the image to undefined
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
// Device local memory to back up image
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs = {};
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.maxAnisotropy = 1.0;
sampler.anisotropyEnable = VK_FALSE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.image = texture.image;
view.viewType = VK_IMAGE_VIEW_TYPE_3D;
view.format = texture.format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
view.subresourceRange.levelCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
// Fill image descriptor image info to be used descriptor set setup
texture.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
texture.descriptor.imageView = texture.view;
texture.descriptor.sampler = texture.sampler;
updateNoiseTexture();
}
// Generate randomized noise and upload it to the 3D texture using staging
void updateNoiseTexture()
{
const uint32_t texMemSize = texture.width * texture.height * texture.depth;
uint8_t *data = new uint8_t[texMemSize];
memset(data, 0, texMemSize);
// Generate perlin based noise
std::cout << "Generating " << texture.width << " x " << texture.height << " x " << texture.depth << " noise texture..." << std::endl;
auto tStart = std::chrono::high_resolution_clock::now();
PerlinNoise<float> perlinNoise;
FractalNoise<float> fractalNoise(perlinNoise);
const float noiseScale = static_cast<float>(rand() % 10) + 4.0f;
#pragma omp parallel for
2020-01-18 10:02:55 +01:00
for (uint32_t z = 0; z < texture.depth; z++)
{
for (uint32_t y = 0; y < texture.height; y++)
{
2020-01-18 10:02:55 +01:00
for (uint32_t x = 0; x < texture.width; x++)
{
float nx = (float)x / (float)texture.width;
float ny = (float)y / (float)texture.height;
float nz = (float)z / (float)texture.depth;
#define FRACTAL
#ifdef FRACTAL
float n = fractalNoise.noise(nx * noiseScale, ny * noiseScale, nz * noiseScale);
#else
float n = 20.0 * perlinNoise.noise(nx, ny, nz);
#endif
n = n - floor(n);
data[x + y * texture.width + z * texture.width * texture.height] = static_cast<uint8_t>(floor(n * 255));
}
}
}
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
std::cout << "Done in " << tDiff << "ms" << std::endl;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
// Buffer object
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = texMemSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Allocate host visible memory for data upload
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs = {};
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *mapped;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&mapped));
memcpy(mapped, data, texMemSize);
vkUnmapMemory(device, stagingMemory);
2020-04-20 22:13:51 +02:00
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// The sub resource range describes the regions of the image we will be transitioned
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 1;
// Optimal image will be used as destination for the copy, so we must transfer from our
// initial undefined image layout to the transfer destination layout
vks::tools::setImageLayout(
copyCmd,
texture.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy 3D noise data to texture
// Setup buffer copy regions
VkBufferImageCopy bufferCopyRegion{};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = texture.width;
bufferCopyRegion.imageExtent.height = texture.height;
bufferCopyRegion.imageExtent.depth = texture.depth;
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
texture.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&bufferCopyRegion);
// Change texture image layout to shader read after all mip levels have been copied
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vks::tools::setImageLayout(
copyCmd,
texture.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture.imageLayout,
subresourceRange);
2020-04-20 22:13:51 +02:00
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Clean up staging resources
delete[] data;
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
}
// Free all Vulkan resources used a texture object
void destroyTextureImage(Texture texture)
{
if (texture.view != VK_NULL_HANDLE)
vkDestroyImageView(device, texture.view, nullptr);
if (texture.image != VK_NULL_HANDLE)
vkDestroyImage(device, texture.image, nullptr);
if (texture.sampler != VK_NULL_HANDLE)
vkDestroySampler(device, texture.sampler, nullptr);
if (texture.deviceMemory != VK_NULL_HANDLE)
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void generateQuad()
{
// Setup vertices for a single uv-mapped quad made from two triangles
std::vector<Vertex> vertices =
{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the gpu memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
void setupVertexDescriptions()
{
// Binding description
vertices.inputBinding.resize(1);
vertices.inputBinding[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.inputAttributes.resize(3);
// Location 0 : Position
vertices.inputAttributes[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, pos));
// Location 1 : Texture coordinates
vertices.inputAttributes[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
offsetof(Vertex, uv));
// Location 1 : Vertex normal
vertices.inputAttributes[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, normal));
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.inputBinding.size());
vertices.inputState.pVertexBindingDescriptions = vertices.inputBinding.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.inputAttributes.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.inputAttributes.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBufferVS.descriptor),
// Binding 1 : Fragment shader texture sampler
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texture.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "texture3d/texture3d.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texture3d/texture3d.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS),
&uboVS));
VK_CHECK_RESULT(uniformBufferVS.map());
updateUniformBuffers();
}
void updateUniformBuffers(bool viewchanged = true)
{
if (viewchanged)
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelView = camera.matrices.view;
uboVS.viewPos = camera.viewPos;
}
else
{
uboVS.depth += frameTimer * 0.15f;
if (uboVS.depth > 1.0f)
uboVS.depth = uboVS.depth - 1.0f;
}
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
}
void prepare()
{
VulkanExampleBase::prepare();
generateQuad();
setupVertexDescriptions();
prepareUniformBuffers();
prepareNoiseTexture(128, 128, 128);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
updateUniformBuffers(camera.updated);
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->button("Generate new texture")) {
updateNoiseTexture();
}
}
}
};
VULKAN_EXAMPLE_MAIN()