procedural-3d-engine/examples/shaderobjects/shaderobjects.cpp

436 lines
19 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Using shader objects via VK_EXT_shader_object
*
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
class VulkanExample: public VulkanExampleBase
{
public:
vkglTF::Model scene;
// Same uniform buffer layout as shader
struct UBOVS {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 lightPos = glm::vec4(0.0f, 2.0f, 1.0f, 0.0f);
} uboVS;
vks::Buffer uniformBuffer;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkShaderEXT shaders[2];
2023-04-28 07:12:12 +02:00
VkPhysicalDeviceShaderObjectFeaturesEXT enabledShaderObjectFeaturesEXT{};
VkPhysicalDeviceDynamicRenderingFeaturesKHR enabledDynamicRenderingFeaturesKHR{};
PFN_vkCreateShadersEXT vkCreateShadersEXT;
PFN_vkCmdBindShadersEXT vkCmdBindShadersEXT;
PFN_vkGetShaderBinaryDataEXT vkGetShaderBinaryDataEXT;
2023-04-28 07:12:12 +02:00
// VK_EXT_shader_objects requires render passes to be dynamic
PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR;
PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR;
// With VK_EXT_shader_object pipeline state must be set at command buffer creation using these functions
// VK_EXT_dynamic_state
PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT;
PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT;
PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT;
PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT;
PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT;
PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT;
PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT;
PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT;
// VK_EXT_vertex_input_dynamic_state
PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Shader objects (VK_EXT_shader_object)";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.5f));
camera.setRotation(glm::vec3(-25.0f, 15.0f, 0.0f));
camera.setRotationSpeed(0.5f);
camera.setPerspective(60.0f, (float)(width) / (float)height, 0.1f, 256.0f);
enabledDeviceExtensions.push_back(VK_EXT_SHADER_OBJECT_EXTENSION_NAME);
2023-04-28 07:12:12 +02:00
enabledDeviceExtensions.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
// With VK_EXT_shader_object all baked pipeline state is set dynamically at command buffer creation, so we need to enable additional extensions
enabledDeviceExtensions.push_back(VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
2023-04-28 07:12:12 +02:00
// Since we are not requiring Vulkan 1.2, we need to enable some additional extensios for dynamic rendering
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME);
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
2023-04-28 07:12:12 +02:00
enabledShaderObjectFeaturesEXT.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_FEATURES_EXT;
enabledShaderObjectFeaturesEXT.shaderObject = VK_TRUE;
enabledDynamicRenderingFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR;
enabledDynamicRenderingFeaturesKHR.dynamicRendering = VK_TRUE;
enabledDynamicRenderingFeaturesKHR.pNext = &enabledShaderObjectFeaturesEXT;
2023-04-28 07:12:12 +02:00
deviceCreatepNextChain = &enabledDynamicRenderingFeaturesKHR;
}
~VulkanExample()
{
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// @todo: destroy shaders
uniformBuffer.destroy();
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
scene.loadFromFile(getAssetPath() + "models/treasure_smooth.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Sets
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
// Loads a binary shader file
void _loadShader(std::string filename, char* &code, size_t &size) {
// @todo: Android
std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate);
if (is.is_open())
{
size = is.tellg();
is.seekg(0, std::ios::beg);
code = new char[size];
is.read(code, size);
is.close();
assert(size > 0);
}
else
{
vks::tools::exitFatal("Error: Could not open shader " + filename, VK_ERROR_UNKNOWN);
}
}
void createShaderObjects()
{
size_t shaderCodeSizes[2]{};
char* shaderCodes[2]{};
VkShaderCreateInfoEXT shaderCreateInfos[2]{};
// With VK_EXT_shader_object we can generate an implementation dependent binary file that's faster to load
// So we check if the binray files exist and if we can load it instead of the SPIR-V
bool binaryShadersLoaded = false;
if (vks::tools::fileExists(getShadersPath() + "shaderobjects/phong.vert.bin") && vks::tools::fileExists(getShadersPath() + "shaderobjects/phong.frag.bin")) {
// VS
_loadShader(getShadersPath() + "shaderobjects/phong.vert.bin", shaderCodes[0], shaderCodeSizes[0]);
shaderCreateInfos[0].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[0].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderCreateInfos[0].nextStage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[0].codeType = VK_SHADER_CODE_TYPE_BINARY_EXT;
shaderCreateInfos[0].pCode = shaderCodes[0];
shaderCreateInfos[0].codeSize = shaderCodeSizes[0];
shaderCreateInfos[0].pName = "main";
shaderCreateInfos[0].setLayoutCount = 1;
shaderCreateInfos[0].pSetLayouts = &descriptorSetLayout;
// FS
_loadShader(getShadersPath() + "shaderobjects/phong.frag.bin", shaderCodes[1], shaderCodeSizes[1]);
shaderCreateInfos[1].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[1].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[1].nextStage = 0;
shaderCreateInfos[1].codeType = VK_SHADER_CODE_TYPE_BINARY_EXT;
shaderCreateInfos[1].pCode = shaderCodes[1];
shaderCreateInfos[1].codeSize = shaderCodeSizes[1];
shaderCreateInfos[1].pName = "main";
shaderCreateInfos[1].setLayoutCount = 1;
shaderCreateInfos[1].pSetLayouts = &descriptorSetLayout;
VkResult result = vkCreateShadersEXT(device, 2, shaderCreateInfos, nullptr, shaders);
// If the function returns e.g. VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT, the binary file is no longer (or not at all) compatible with the current implementation
if (result == VK_SUCCESS) {
binaryShadersLoaded = true;
} else {
std::cout << "Could not load binary shader files (" << vks::tools::errorString(result) << ", loading SPIR - V instead\n";
}
}
// If the binary files weren't present, or we could not load them, we load from SPIR-V
if (!binaryShadersLoaded) {
// VS
_loadShader(getShadersPath() + "shaderobjects/phong.vert.spv", shaderCodes[0], shaderCodeSizes[0]);
shaderCreateInfos[0].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[0].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderCreateInfos[0].nextStage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[0].codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT;
shaderCreateInfos[0].pCode = shaderCodes[0];
shaderCreateInfos[0].codeSize = shaderCodeSizes[0];
shaderCreateInfos[0].pName = "main";
shaderCreateInfos[0].setLayoutCount = 1;
shaderCreateInfos[0].pSetLayouts = &descriptorSetLayout;
// FS
_loadShader(getShadersPath() + "shaderobjects/phong.frag.spv", shaderCodes[1], shaderCodeSizes[1]);
shaderCreateInfos[1].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[1].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[1].nextStage = 0;
shaderCreateInfos[1].codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT;
shaderCreateInfos[1].pCode = shaderCodes[1];
shaderCreateInfos[1].codeSize = shaderCodeSizes[1];
shaderCreateInfos[1].pName = "main";
shaderCreateInfos[1].setLayoutCount = 1;
shaderCreateInfos[1].pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreateShadersEXT(device, 2, shaderCreateInfos, nullptr, shaders));
// Store the binary shader files so we can try to load them at the next start
size_t dataSize{ 0 };
char* data{ nullptr };
std::fstream is;
vkGetShaderBinaryDataEXT(device, shaders[0], &dataSize, nullptr);
data = new char[dataSize];
vkGetShaderBinaryDataEXT(device, shaders[0], &dataSize, data);
is.open(getShadersPath() + "shaderobjects/phong.vert.bin", std::ios::binary | std::ios::out);
is.write(data, dataSize);
is.close();
delete[] data;
vkGetShaderBinaryDataEXT(device, shaders[1], &dataSize, nullptr);
data = new char[dataSize];
vkGetShaderBinaryDataEXT(device, shaders[1], &dataSize, data);
is.open(getShadersPath() + "shaderobjects/phong.frag.bin", std::ios::binary | std::ios::out);
is.write(data, dataSize);
is.close();
delete[] data;
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
2023-04-28 07:12:12 +02:00
// Transition color and depth images for drawing
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
0,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
depthStencil.image,
0,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 });
// New structures are used to define the attachments used in dynamic rendering
VkRenderingAttachmentInfoKHR colorAttachment{};
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
colorAttachment.imageView = swapChain.buffers[i].view;
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
2023-04-28 07:12:12 +02:00
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.clearValue.color = { 0.0f,0.0f,0.0f,0.0f };
// A single depth stencil attachment info can be used, but they can also be specified separately.
// When both are specified separately, the only requirement is that the image view is identical.
VkRenderingAttachmentInfoKHR depthStencilAttachment{};
depthStencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
depthStencilAttachment.imageView = depthStencil.view;
depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 };
VkRenderingInfoKHR renderingInfo{};
renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR;
renderingInfo.renderArea = { 0, 0, width, height };
renderingInfo.layerCount = 1;
renderingInfo.colorAttachmentCount = 1;
renderingInfo.pColorAttachments = &colorAttachment;
renderingInfo.pDepthAttachment = &depthStencilAttachment;
renderingInfo.pStencilAttachment = &depthStencilAttachment;
// Begin dynamic rendering
vkCmdBeginRenderingKHR(drawCmdBuffers[i], &renderingInfo);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
// No more pipelines required, everything is bound at command buffer level
2023-04-23 09:08:27 +02:00
vkCmdSetViewportWithCountEXT(drawCmdBuffers[i], 1, &viewport);
vkCmdSetScissorWithCountEXT(drawCmdBuffers[i], 1, &scissor);
vkCmdSetCullModeEXT(drawCmdBuffers[i], VK_CULL_MODE_BACK_BIT);
vkCmdSetFrontFaceEXT(drawCmdBuffers[i], VK_FRONT_FACE_COUNTER_CLOCKWISE);
vkCmdSetDepthTestEnableEXT(drawCmdBuffers[i], VK_TRUE);
vkCmdSetDepthWriteEnableEXT(drawCmdBuffers[i], VK_TRUE);
vkCmdSetDepthCompareOpEXT(drawCmdBuffers[i], VK_COMPARE_OP_LESS_OR_EQUAL);
vkCmdSetPrimitiveTopologyEXT(drawCmdBuffers[i], VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
VkVertexInputBindingDescription2EXT vertexInputBinding{};
vertexInputBinding.sType = VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT;
vertexInputBinding.binding = 0;
vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
vertexInputBinding.stride = sizeof(vkglTF::Vertex);
vertexInputBinding.divisor = 1;
std::vector<VkVertexInputAttributeDescription2EXT> vertexAttributes = {
{ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, pos) },
{ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 1, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, normal) },
{ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 2, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(vkglTF::Vertex, color) }
};
vkCmdSetVertexInputEXT(drawCmdBuffers[i], 1, &vertexInputBinding, 3, vertexAttributes.data());
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
scene.bindBuffers(drawCmdBuffers[i]);
// Binding the shaders
VkShaderStageFlagBits stages[2] = { VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_FRAGMENT_BIT };
vkCmdBindShadersEXT(drawCmdBuffers[i], 2, stages, shaders);
scene.draw(drawCmdBuffers[i]);
// @todo: Currently disabled, the UI needs to be adopated to work with shader objects
// drawUI(drawCmdBuffers[i]);
2023-04-28 07:12:12 +02:00
// End dynamic rendering
vkCmdEndRenderingKHR(drawCmdBuffers[i]);
// Transition color image for presentation
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Create the vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uboVS)));
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelView = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
vkCreateShadersEXT = reinterpret_cast<PFN_vkCreateShadersEXT>(vkGetDeviceProcAddr(device, "vkCreateShadersEXT"));
vkCmdBindShadersEXT = reinterpret_cast<PFN_vkCmdBindShadersEXT>(vkGetDeviceProcAddr(device, "vkCmdBindShadersEXT"));
vkGetShaderBinaryDataEXT = reinterpret_cast<PFN_vkGetShaderBinaryDataEXT>(vkGetDeviceProcAddr(device, "vkGetShaderBinaryDataEXT"));
2023-04-28 07:12:12 +02:00
vkCmdBeginRenderingKHR = reinterpret_cast<PFN_vkCmdBeginRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdBeginRenderingKHR"));
vkCmdEndRenderingKHR = reinterpret_cast<PFN_vkCmdEndRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdEndRenderingKHR"));
vkCmdSetViewportWithCountEXT = reinterpret_cast<PFN_vkCmdSetViewportWithCountEXT>(vkGetDeviceProcAddr(device, "vkCmdSetViewportWithCountEXT"));;
vkCmdSetScissorWithCountEXT = reinterpret_cast<PFN_vkCmdSetScissorWithCountEXT>(vkGetDeviceProcAddr(device, "vkCmdSetScissorWithCountEXT"));
vkCmdSetDepthCompareOpEXT = reinterpret_cast<PFN_vkCmdSetDepthCompareOpEXT>(vkGetDeviceProcAddr(device, "vkCmdSetDepthCompareOpEXT"));
vkCmdSetCullModeEXT = reinterpret_cast<PFN_vkCmdSetCullModeEXT>(vkGetDeviceProcAddr(device, "vkCmdSetCullModeEXT"));
vkCmdSetDepthTestEnableEXT = reinterpret_cast<PFN_vkCmdSetDepthTestEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetDepthTestEnableEXT"));
vkCmdSetDepthWriteEnableEXT = reinterpret_cast<PFN_vkCmdSetDepthWriteEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetDepthWriteEnableEXT"));
vkCmdSetFrontFaceEXT = reinterpret_cast<PFN_vkCmdSetFrontFaceEXT>(vkGetDeviceProcAddr(device, "vkCmdSetFrontFaceEXT"));
vkCmdSetPrimitiveTopologyEXT = reinterpret_cast<PFN_vkCmdSetPrimitiveTopologyEXT>(vkGetDeviceProcAddr(device, "vkCmdSetPrimitiveTopologyEXT"));
vkCmdSetVertexInputEXT = reinterpret_cast<PFN_vkCmdSetVertexInputEXT>(vkGetDeviceProcAddr(device, "vkCmdSetVertexInputEXT"));
loadAssets();
prepareUniformBuffers();
setupDescriptors();
createShaderObjects();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()