procedural-3d-engine/examples/descriptorindexing/descriptorindexing.cpp

434 lines
17 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Descriptor indexing (VK_EXT_descriptor_indexing)
*
* Relevant code parts are marked with [POI]
*
* Copyright (C) Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
int32_t textureIndex;
};
class VulkanExample : public VulkanExampleBase
{
public:
// Number of array layers in texture array
// Also used as instance count
uint32_t layerCount;
std::vector<vks::Texture2D> textures;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer uniformBufferVS;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
} uboVS;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkPhysicalDeviceDescriptorIndexingFeaturesEXT physicalDeviceDescriptorIndexingFeatures{};
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Descriptor indexing";
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -7.5f));
camera.setRotation(glm::vec3(-35.0f, 0.0f, 0.0f));
camera.setPerspective(45.0f, (float)width / (float)height, 0.1f, 256.0f);
/*
[POI] Enable required extensions
*/
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
/*
[POI] Enable required extension features
*/
physicalDeviceDescriptorIndexingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT;
physicalDeviceDescriptorIndexingFeatures.shaderSampledImageArrayNonUniformIndexing = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.runtimeDescriptorArray = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.descriptorBindingVariableDescriptorCount = VK_TRUE;
deviceCreatepNextChain = &physicalDeviceDescriptorIndexingFeatures;
}
~VulkanExample()
{
//vkDestroyImageView(device, textureArray.view, nullptr);
//vkDestroyImage(device, textureArray.image, nullptr);
//vkDestroySampler(device, textureArray.sampler, nullptr);
//vkFreeMemory(device, textureArray.deviceMemory, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBufferVS.destroy();
}
void loadAssets()
{
textures.resize(7);
for (uint32_t i = 0; i < 7; i++) {
textures[i].loadFromFile(getAssetPath() + "textures/array/" + std::to_string(i) + ".ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, layerCount, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void generateCube(glm::vec3 pos, float scale, std::vector<Vertex> &vertices, std::vector<uint32_t> &indices)
{
// Generate random per-face texture indices
std::random_device mch;
std::default_random_engine generator(mch());
std::uniform_int_distribution<int32_t> rndTextureIndex(0, layerCount - 1);
std::vector<int32_t> faceTextureIndex(6);
for (auto &textureIndex : faceTextureIndex) {
textureIndex = rndTextureIndex(generator);
}
std::cout << faceTextureIndex[0] << std::endl;
std::vector<Vertex> cubeVertices = {
{ { -scale, -scale, scale }, { 0.0f, 0.0f }, faceTextureIndex[0] },
{ { scale, -scale, scale }, { 1.0f, 0.0f }, faceTextureIndex[0] },
{ { scale, scale, scale }, { 1.0f, 1.0f }, faceTextureIndex[0] },
{ { -scale, scale, scale }, { 0.0f, 1.0f }, faceTextureIndex[0] },
{ { scale, scale, scale }, { 0.0f, 0.0f }, faceTextureIndex[1] },
{ { scale, scale, -scale }, { 1.0f, 0.0f }, faceTextureIndex[1] },
{ { scale, -scale, -scale }, { 1.0f, 1.0f }, faceTextureIndex[1] },
{ { scale, -scale, scale }, { 0.0f, 1.0f }, faceTextureIndex[1] },
{ { -scale, -scale, -scale }, { 0.0f, 0.0f }, faceTextureIndex[2] },
{ { scale, -scale, -scale }, { 1.0f, 0.0f }, faceTextureIndex[2] },
{ { scale, scale, -scale }, { 1.0f, 1.0f }, faceTextureIndex[2] },
{ { -scale, scale, -scale }, { 0.0f, 1.0f }, faceTextureIndex[2] },
{ { -scale, -scale, -scale }, { 0.0f, 0.0f }, faceTextureIndex[3] },
{ { -scale, -scale, scale }, { 1.0f, 0.0f }, faceTextureIndex[3] },
{ { -scale, scale, scale }, { 1.0f, 1.0f }, faceTextureIndex[3] },
{ { -scale, scale, -scale }, { 0.0f, 1.0f }, faceTextureIndex[3] },
{ { scale, scale, scale }, { 0.0f, 0.0f }, faceTextureIndex[4] },
{ { -scale, scale, scale }, { 1.0f, 0.0f }, faceTextureIndex[4] },
{ { -scale, scale, -scale }, { 1.0f, 1.0f }, faceTextureIndex[4] },
{ { scale, scale, -scale }, { 0.0f, 1.0f }, faceTextureIndex[4] },
{ { -scale, -scale, -scale }, { 0.0f, 0.0f }, faceTextureIndex[5] },
{ { scale, -scale, -scale }, { 1.0f, 0.0f }, faceTextureIndex[5] },
{ { scale, -scale, scale }, { 1.0f, 1.0f }, faceTextureIndex[5] },
{ { -scale, -scale, scale }, { 0.0f, 1.0f }, faceTextureIndex[5] },
};
for (auto &vertex : cubeVertices) {
vertex.pos[0] += pos.x;
vertex.pos[1] += pos.y;
vertex.pos[2] += pos.z;
}
std::vector<uint32_t> cubeIndices = {
0,1,2, 0,2,3, 4,5,6, 4,6,7, 8,9,10, 8,10,11, 12,13,14, 12,14,15, 16,17,18, 16,18,19, 20,21,22, 20,22,23
};
for (auto &index : cubeIndices) {
index += vertices.size();
}
vertices.insert(vertices.end(), cubeVertices.begin(), cubeVertices.end());
indices.insert(indices.end(), cubeIndices.begin(), cubeIndices.end());
}
void generateBuffers()
{
std::vector<Vertex> vertices;
std::vector<uint32_t> indices;
float offset = -1.5f;
float center = (layerCount * offset) / 2.0f - (offset * 0.5f);
//for (uint32_t i = 0; i < 7; i++) {
//generateCube(glm::vec3(i * offset - center, 0.0f, 0.0f), 0.5f, vertices, indices);
//}
generateCube(glm::vec3(0.0f, 0.0f, 0.0f), 0.5f, vertices, indices);
indexCount = static_cast<uint32_t>(indices.size());
// For the sake of simplicity we won't stage the vertex data to the gpu memory
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
/*
[POI] Set up descriptor sets and set layout
*/
void setupDescriptorSets()
{
/*
Descriptor set layout
*/
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
/*
[POI]
Binding 1 contains a texture array that is dynamically non-uniform sampled from
FS:
outFragColor = texture(textures[nonuniformEXT(inTexIndex)], inUV);
*/
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1, static_cast<uint32_t>(textures.size()))
};
/*
[POI]
The fragment shader will be using an unsized array, which has to be marked with a certain flag
FS:
layout (set = 0, binding = 1) uniform sampler2D textures[];
*/
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT setLayoutBindingFlags{};
setLayoutBindingFlags.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT;
setLayoutBindingFlags.bindingCount = 2;
std::vector<VkDescriptorBindingFlagsEXT> descriptorBindingFlags = {
0,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
};
setLayoutBindingFlags.pBindingFlags = descriptorBindingFlags.data();
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), setLayoutBindings.size());
descriptorSetLayoutCI.pNext = &setLayoutBindingFlags;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
/*
Descriptor pool
*/
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, textures.size())
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes.size(), poolSizes.data(), 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
/*
Descriptor sets
*/
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets(2);
writeDescriptorSets[0] = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor);
// Image descriptors for the texture array
std::vector<VkDescriptorImageInfo> textureDescriptors(textures.size());
for (size_t i = 0; i < textures.size(); i++) {
textureDescriptors[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
textureDescriptors[i].sampler = textures[i].sampler;;
textureDescriptors[i].imageView = textures[i].view;
}
/*
[POI]
Second and final descriptor is a texture array
Unlike an array texture, these are adressed like typical arrays
*/
writeDescriptorSets[1] = {};
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].dstArrayElement = 0;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSets[1].descriptorCount = static_cast<uint32_t>(textures.size());
writeDescriptorSets[1].pBufferInfo = 0;
writeDescriptorSets[1].dstSet = descriptorSet;
writeDescriptorSets[1].pImageInfo = textureDescriptors.data();
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
// Vertex bindings and attributes
VkVertexInputBindingDescription vertexInputBinding = { 0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX };
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
{ 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos) },
{ 1, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv) },
{ 2, 0, VK_FORMAT_R32_SINT, offsetof(Vertex, textureIndex) }
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
// Instacing pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "descriptorindexing/descriptorindexing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "descriptorindexing/descriptorindexing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS)));
VK_CHECK_RESULT(uniformBufferVS.map());
updateUniformBuffersCamera();
}
void updateUniformBuffersCamera()
{
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
uboVS.model = glm::mat4(1.0f);
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
layerCount = textures.size();
generateBuffers();
prepareUniformBuffers();
setupDescriptorSets();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated)
updateUniformBuffersCamera();
}
};
VULKAN_EXAMPLE_MAIN()