2023-11-01 10:55:33 +01:00
/*
2023-11-28 20:01:12 +01:00
* Vulkan Example - Rendering a glTF model using hardware accelerated ray tracing example ( for proper transparency , this sample does frame accumulation )
2023-11-01 10:55:33 +01:00
*
2024-02-12 10:23:56 +01:00
* Copyright ( C ) 2023 - 2024 by Sascha Willems - www . saschawillems . de
2023-11-01 10:55:33 +01:00
*
* This code is licensed under the MIT license ( MIT ) ( http : //opensource.org/licenses/MIT)
*/
# include "VulkanRaytracingSample.h"
# define VK_GLTF_MATERIAL_IDS
# include "VulkanglTFModel.h"
class VulkanExample : public VulkanRaytracingSample
{
public :
AccelerationStructure bottomLevelAS { } ;
AccelerationStructure topLevelAS { } ;
vks : : Buffer vertexBuffer ;
vks : : Buffer indexBuffer ;
2024-01-13 19:15:42 +01:00
uint32_t indexCount { 0 } ;
2023-11-01 10:55:33 +01:00
vks : : Buffer transformBuffer ;
struct GeometryNode {
uint64_t vertexBufferDeviceAddress ;
uint64_t indexBufferDeviceAddress ;
int32_t textureIndexBaseColor ;
int32_t textureIndexOcclusion ;
} ;
vks : : Buffer geometryNodesBuffer ;
std : : vector < VkRayTracingShaderGroupCreateInfoKHR > shaderGroups { } ;
struct ShaderBindingTables {
ShaderBindingTable raygen ;
ShaderBindingTable miss ;
ShaderBindingTable hit ;
} shaderBindingTables ;
vks : : Texture2D texture ;
struct UniformData {
glm : : mat4 viewInverse ;
glm : : mat4 projInverse ;
uint32_t frame { 0 } ;
} uniformData ;
2024-01-13 19:15:42 +01:00
vks : : Buffer uniformBuffer ;
2023-11-01 10:55:33 +01:00
2024-01-13 19:15:42 +01:00
VkPipeline pipeline { VK_NULL_HANDLE } ;
VkPipelineLayout pipelineLayout { VK_NULL_HANDLE } ;
VkDescriptorSet descriptorSet { VK_NULL_HANDLE } ;
VkDescriptorSetLayout descriptorSetLayout { VK_NULL_HANDLE } ;
2023-11-01 10:55:33 +01:00
vkglTF : : Model model ;
VkPhysicalDeviceDescriptorIndexingFeaturesEXT physicalDeviceDescriptorIndexingFeatures { } ;
VulkanExample ( ) : VulkanRaytracingSample ( )
{
title = " Ray tracing glTF model " ;
camera . type = Camera : : CameraType : : lookat ;
camera . setPerspective ( 60.0f , ( float ) width / ( float ) height , 0.1f , 512.0f ) ;
camera . setRotation ( glm : : vec3 ( 0.0f , 0.0f , 0.0f ) ) ;
camera . setTranslation ( glm : : vec3 ( 0.0f , - 0.1f , - 1.0f ) ) ;
enableExtensions ( ) ;
// Buffer device address requires the 64-bit integer feature to be enabled
enabledFeatures . shaderInt64 = VK_TRUE ;
enabledDeviceExtensions . push_back ( VK_KHR_MAINTENANCE3_EXTENSION_NAME ) ;
enabledDeviceExtensions . push_back ( VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME ) ;
}
~ VulkanExample ( )
{
2024-01-13 19:15:42 +01:00
if ( device ) {
vkDestroyPipeline ( device , pipeline , nullptr ) ;
vkDestroyPipelineLayout ( device , pipelineLayout , nullptr ) ;
vkDestroyDescriptorSetLayout ( device , descriptorSetLayout , nullptr ) ;
deleteStorageImage ( ) ;
deleteAccelerationStructure ( bottomLevelAS ) ;
deleteAccelerationStructure ( topLevelAS ) ;
vertexBuffer . destroy ( ) ;
indexBuffer . destroy ( ) ;
transformBuffer . destroy ( ) ;
shaderBindingTables . raygen . destroy ( ) ;
shaderBindingTables . miss . destroy ( ) ;
shaderBindingTables . hit . destroy ( ) ;
uniformBuffer . destroy ( ) ;
geometryNodesBuffer . destroy ( ) ;
}
2023-11-01 10:55:33 +01:00
}
void createAccelerationStructureBuffer ( AccelerationStructure & accelerationStructure , VkAccelerationStructureBuildSizesInfoKHR buildSizeInfo )
{
VkBufferCreateInfo bufferCreateInfo { } ;
bufferCreateInfo . sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO ;
bufferCreateInfo . size = buildSizeInfo . accelerationStructureSize ;
bufferCreateInfo . usage = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT ;
VK_CHECK_RESULT ( vkCreateBuffer ( device , & bufferCreateInfo , nullptr , & accelerationStructure . buffer ) ) ;
VkMemoryRequirements memoryRequirements { } ;
vkGetBufferMemoryRequirements ( device , accelerationStructure . buffer , & memoryRequirements ) ;
VkMemoryAllocateFlagsInfo memoryAllocateFlagsInfo { } ;
memoryAllocateFlagsInfo . sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO ;
memoryAllocateFlagsInfo . flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR ;
VkMemoryAllocateInfo memoryAllocateInfo { } ;
memoryAllocateInfo . sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO ;
memoryAllocateInfo . pNext = & memoryAllocateFlagsInfo ;
memoryAllocateInfo . allocationSize = memoryRequirements . size ;
memoryAllocateInfo . memoryTypeIndex = vulkanDevice - > getMemoryType ( memoryRequirements . memoryTypeBits , VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT ) ;
VK_CHECK_RESULT ( vkAllocateMemory ( device , & memoryAllocateInfo , nullptr , & accelerationStructure . memory ) ) ;
VK_CHECK_RESULT ( vkBindBufferMemory ( device , accelerationStructure . buffer , accelerationStructure . memory , 0 ) ) ;
}
/*
Create the bottom level acceleration structure that contains the scene ' s actual geometry ( vertices , triangles )
*/
void createBottomLevelAccelerationStructure ( )
{
// Use transform matrices from the glTF nodes
std : : vector < VkTransformMatrixKHR > transformMatrices { } ;
for ( auto node : model . linearNodes ) {
if ( node - > mesh ) {
for ( auto primitive : node - > mesh - > primitives ) {
if ( primitive - > indexCount > 0 ) {
VkTransformMatrixKHR transformMatrix { } ;
auto m = glm : : mat3x4 ( glm : : transpose ( node - > getMatrix ( ) ) ) ;
memcpy ( & transformMatrix , ( void * ) & m , sizeof ( glm : : mat3x4 ) ) ;
transformMatrices . push_back ( transformMatrix ) ;
}
}
}
}
// Transform buffer
VK_CHECK_RESULT ( vulkanDevice - > createBuffer (
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR ,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT ,
& transformBuffer ,
static_cast < uint32_t > ( transformMatrices . size ( ) ) * sizeof ( VkTransformMatrixKHR ) ,
transformMatrices . data ( ) ) ) ;
// Build
// One geometry per glTF node, so we can index materials using gl_GeometryIndexEXT
uint32_t maxPrimCount { 0 } ;
std : : vector < uint32_t > maxPrimitiveCounts { } ;
std : : vector < VkAccelerationStructureGeometryKHR > geometries { } ;
std : : vector < VkAccelerationStructureBuildRangeInfoKHR > buildRangeInfos { } ;
std : : vector < VkAccelerationStructureBuildRangeInfoKHR * > pBuildRangeInfos { } ;
std : : vector < GeometryNode > geometryNodes { } ;
for ( auto node : model . linearNodes ) {
if ( node - > mesh ) {
for ( auto primitive : node - > mesh - > primitives ) {
if ( primitive - > indexCount > 0 ) {
VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress { } ;
VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress { } ;
VkDeviceOrHostAddressConstKHR transformBufferDeviceAddress { } ;
vertexBufferDeviceAddress . deviceAddress = getBufferDeviceAddress ( model . vertices . buffer ) ; // +primitive->firstVertex * sizeof(vkglTF::Vertex);
indexBufferDeviceAddress . deviceAddress = getBufferDeviceAddress ( model . indices . buffer ) + primitive - > firstIndex * sizeof ( uint32_t ) ;
transformBufferDeviceAddress . deviceAddress = getBufferDeviceAddress ( transformBuffer . buffer ) + static_cast < uint32_t > ( geometryNodes . size ( ) ) * sizeof ( VkTransformMatrixKHR ) ;
VkAccelerationStructureGeometryKHR geometry { } ;
geometry . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR ;
geometry . geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR ;
geometry . geometry . triangles . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR ;
geometry . geometry . triangles . vertexFormat = VK_FORMAT_R32G32B32_SFLOAT ;
geometry . geometry . triangles . vertexData = vertexBufferDeviceAddress ;
geometry . geometry . triangles . maxVertex = model . vertices . count ;
//geometry.geometry.triangles.maxVertex = primitive->vertexCount;
geometry . geometry . triangles . vertexStride = sizeof ( vkglTF : : Vertex ) ;
geometry . geometry . triangles . indexType = VK_INDEX_TYPE_UINT32 ;
geometry . geometry . triangles . indexData = indexBufferDeviceAddress ;
geometry . geometry . triangles . transformData = transformBufferDeviceAddress ;
geometries . push_back ( geometry ) ;
maxPrimitiveCounts . push_back ( primitive - > indexCount / 3 ) ;
maxPrimCount + = primitive - > indexCount / 3 ;
VkAccelerationStructureBuildRangeInfoKHR buildRangeInfo { } ;
buildRangeInfo . firstVertex = 0 ;
buildRangeInfo . primitiveOffset = 0 ; // primitive->firstIndex * sizeof(uint32_t);
buildRangeInfo . primitiveCount = primitive - > indexCount / 3 ;
buildRangeInfo . transformOffset = 0 ;
buildRangeInfos . push_back ( buildRangeInfo ) ;
GeometryNode geometryNode { } ;
geometryNode . vertexBufferDeviceAddress = vertexBufferDeviceAddress . deviceAddress ;
geometryNode . indexBufferDeviceAddress = indexBufferDeviceAddress . deviceAddress ;
geometryNode . textureIndexBaseColor = primitive - > material . baseColorTexture - > index ;
geometryNode . textureIndexOcclusion = primitive - > material . occlusionTexture ? primitive - > material . occlusionTexture - > index : - 1 ;
// @todo: map material id to global texture array
geometryNodes . push_back ( geometryNode ) ;
}
}
}
}
for ( auto & rangeInfo : buildRangeInfos ) {
pBuildRangeInfos . push_back ( & rangeInfo ) ;
}
// @todo: stage to device
VK_CHECK_RESULT ( vulkanDevice - > createBuffer (
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT ,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT ,
& geometryNodesBuffer ,
static_cast < uint32_t > ( geometryNodes . size ( ) ) * sizeof ( GeometryNode ) ,
geometryNodes . data ( ) ) ) ;
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo { } ;
accelerationStructureBuildGeometryInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR ;
accelerationStructureBuildGeometryInfo . type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR ;
accelerationStructureBuildGeometryInfo . flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR ;
2023-11-19 11:15:21 +01:00
accelerationStructureBuildGeometryInfo . geometryCount = static_cast < uint32_t > ( geometries . size ( ) ) ;
2023-11-01 10:55:33 +01:00
accelerationStructureBuildGeometryInfo . pGeometries = geometries . data ( ) ;
const uint32_t numTriangles = maxPrimitiveCounts [ 0 ] ;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo { } ;
accelerationStructureBuildSizesInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR ;
vkGetAccelerationStructureBuildSizesKHR (
device ,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR ,
& accelerationStructureBuildGeometryInfo ,
maxPrimitiveCounts . data ( ) ,
& accelerationStructureBuildSizesInfo ) ;
createAccelerationStructureBuffer ( bottomLevelAS , accelerationStructureBuildSizesInfo ) ;
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo { } ;
accelerationStructureCreateInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR ;
accelerationStructureCreateInfo . buffer = bottomLevelAS . buffer ;
accelerationStructureCreateInfo . size = accelerationStructureBuildSizesInfo . accelerationStructureSize ;
accelerationStructureCreateInfo . type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR ;
vkCreateAccelerationStructureKHR ( device , & accelerationStructureCreateInfo , nullptr , & bottomLevelAS . handle ) ;
// Create a small scratch buffer used during build of the bottom level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer ( accelerationStructureBuildSizesInfo . buildScratchSize ) ;
accelerationStructureBuildGeometryInfo . mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR ;
accelerationStructureBuildGeometryInfo . dstAccelerationStructure = bottomLevelAS . handle ;
accelerationStructureBuildGeometryInfo . scratchData . deviceAddress = scratchBuffer . deviceAddress ;
const VkAccelerationStructureBuildRangeInfoKHR * buildOffsetInfo = buildRangeInfos . data ( ) ;
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice - > createCommandBuffer ( VK_COMMAND_BUFFER_LEVEL_PRIMARY , true ) ;
vkCmdBuildAccelerationStructuresKHR (
commandBuffer ,
1 ,
& accelerationStructureBuildGeometryInfo ,
pBuildRangeInfos . data ( ) ) ;
vulkanDevice - > flushCommandBuffer ( commandBuffer , queue ) ;
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo { } ;
accelerationDeviceAddressInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR ;
accelerationDeviceAddressInfo . accelerationStructure = bottomLevelAS . handle ;
bottomLevelAS . deviceAddress = vkGetAccelerationStructureDeviceAddressKHR ( device , & accelerationDeviceAddressInfo ) ;
deleteScratchBuffer ( scratchBuffer ) ;
}
/*
The top level acceleration structure contains the scene ' s object instances
*/
void createTopLevelAccelerationStructure ( )
{
// We flip the matrix [1][1] = -1.0f to accomodate for the glTF up vector
VkTransformMatrixKHR transformMatrix = {
1.0f , 0.0f , 0.0f , 0.0f ,
0.0f , - 1.0f , 0.0f , 0.0f ,
0.0f , 0.0f , 1.0f , 0.0f } ;
VkAccelerationStructureInstanceKHR instance { } ;
instance . transform = transformMatrix ;
instance . instanceCustomIndex = 0 ;
instance . mask = 0xFF ;
instance . instanceShaderBindingTableRecordOffset = 0 ;
instance . flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR ;
instance . accelerationStructureReference = bottomLevelAS . deviceAddress ;
// Buffer for instance data
vks : : Buffer instancesBuffer ;
VK_CHECK_RESULT ( vulkanDevice - > createBuffer (
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR ,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT ,
& instancesBuffer ,
sizeof ( VkAccelerationStructureInstanceKHR ) ,
& instance ) ) ;
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress { } ;
instanceDataDeviceAddress . deviceAddress = getBufferDeviceAddress ( instancesBuffer . buffer ) ;
VkAccelerationStructureGeometryKHR accelerationStructureGeometry { } ;
accelerationStructureGeometry . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR ;
accelerationStructureGeometry . geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR ;
accelerationStructureGeometry . flags = VK_GEOMETRY_OPAQUE_BIT_KHR ;
accelerationStructureGeometry . geometry . instances . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR ;
accelerationStructureGeometry . geometry . instances . arrayOfPointers = VK_FALSE ;
accelerationStructureGeometry . geometry . instances . data = instanceDataDeviceAddress ;
// Get size info
/*
The pSrcAccelerationStructure , dstAccelerationStructure , and mode members of pBuildInfo are ignored . Any VkDeviceOrHostAddressKHR members of pBuildInfo are ignored by this command , except that the hostAddress member of VkAccelerationStructureGeometryTrianglesDataKHR : : transformData will be examined to check if it is NULL . *
*/
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo { } ;
accelerationStructureBuildGeometryInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR ;
accelerationStructureBuildGeometryInfo . type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR ;
accelerationStructureBuildGeometryInfo . flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR ;
accelerationStructureBuildGeometryInfo . geometryCount = 1 ;
accelerationStructureBuildGeometryInfo . pGeometries = & accelerationStructureGeometry ;
uint32_t primitive_count = 1 ;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo { } ;
accelerationStructureBuildSizesInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR ;
vkGetAccelerationStructureBuildSizesKHR (
device ,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR ,
& accelerationStructureBuildGeometryInfo ,
& primitive_count ,
& accelerationStructureBuildSizesInfo ) ;
createAccelerationStructureBuffer ( topLevelAS , accelerationStructureBuildSizesInfo ) ;
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo { } ;
accelerationStructureCreateInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR ;
accelerationStructureCreateInfo . buffer = topLevelAS . buffer ;
accelerationStructureCreateInfo . size = accelerationStructureBuildSizesInfo . accelerationStructureSize ;
accelerationStructureCreateInfo . type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR ;
vkCreateAccelerationStructureKHR ( device , & accelerationStructureCreateInfo , nullptr , & topLevelAS . handle ) ;
// Create a small scratch buffer used during build of the top level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer ( accelerationStructureBuildSizesInfo . buildScratchSize ) ;
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo { } ;
accelerationBuildGeometryInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR ;
accelerationBuildGeometryInfo . type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR ;
accelerationBuildGeometryInfo . flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR ;
accelerationBuildGeometryInfo . mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR ;
accelerationBuildGeometryInfo . dstAccelerationStructure = topLevelAS . handle ;
accelerationBuildGeometryInfo . geometryCount = 1 ;
accelerationBuildGeometryInfo . pGeometries = & accelerationStructureGeometry ;
accelerationBuildGeometryInfo . scratchData . deviceAddress = scratchBuffer . deviceAddress ;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo { } ;
accelerationStructureBuildRangeInfo . primitiveCount = 1 ;
accelerationStructureBuildRangeInfo . primitiveOffset = 0 ;
accelerationStructureBuildRangeInfo . firstVertex = 0 ;
accelerationStructureBuildRangeInfo . transformOffset = 0 ;
std : : vector < VkAccelerationStructureBuildRangeInfoKHR * > accelerationBuildStructureRangeInfos = { & accelerationStructureBuildRangeInfo } ;
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice - > createCommandBuffer ( VK_COMMAND_BUFFER_LEVEL_PRIMARY , true ) ;
vkCmdBuildAccelerationStructuresKHR (
commandBuffer ,
1 ,
& accelerationBuildGeometryInfo ,
accelerationBuildStructureRangeInfos . data ( ) ) ;
vulkanDevice - > flushCommandBuffer ( commandBuffer , queue ) ;
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo { } ;
accelerationDeviceAddressInfo . sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR ;
accelerationDeviceAddressInfo . accelerationStructure = topLevelAS . handle ;
deleteScratchBuffer ( scratchBuffer ) ;
instancesBuffer . destroy ( ) ;
}
/*
Create the Shader Binding Tables that binds the programs and top - level acceleration structure
SBT Layout used in this sample :
/ - - - - - - - - - - - \
| raygen |
| - - - - - - - - - - - |
| miss + shadow |
| - - - - - - - - - - - |
| hit + any |
\ - - - - - - - - - - - /
*/
void createShaderBindingTables ( ) {
const uint32_t handleSize = rayTracingPipelineProperties . shaderGroupHandleSize ;
const uint32_t handleSizeAligned = vks : : tools : : alignedSize ( rayTracingPipelineProperties . shaderGroupHandleSize , rayTracingPipelineProperties . shaderGroupHandleAlignment ) ;
const uint32_t groupCount = static_cast < uint32_t > ( shaderGroups . size ( ) ) ;
const uint32_t sbtSize = groupCount * handleSizeAligned ;
std : : vector < uint8_t > shaderHandleStorage ( sbtSize ) ;
VK_CHECK_RESULT ( vkGetRayTracingShaderGroupHandlesKHR ( device , pipeline , 0 , groupCount , sbtSize , shaderHandleStorage . data ( ) ) ) ;
createShaderBindingTable ( shaderBindingTables . raygen , 1 ) ;
createShaderBindingTable ( shaderBindingTables . miss , 2 ) ;
createShaderBindingTable ( shaderBindingTables . hit , 1 ) ;
// Copy handles
memcpy ( shaderBindingTables . raygen . mapped , shaderHandleStorage . data ( ) , handleSize ) ;
// We are using two miss shaders, so we need to get two handles for the miss shader binding table
memcpy ( shaderBindingTables . miss . mapped , shaderHandleStorage . data ( ) + handleSizeAligned , handleSize * 2 ) ;
memcpy ( shaderBindingTables . hit . mapped , shaderHandleStorage . data ( ) + handleSizeAligned * 3 , handleSize ) ;
}
/*
Create our ray tracing pipeline
*/
void createRayTracingPipeline ( )
{
// @todo:
uint32_t imageCount { 0 } ;
imageCount = static_cast < uint32_t > ( model . textures . size ( ) ) ;
std : : vector < VkDescriptorSetLayoutBinding > setLayoutBindings = {
// Binding 0: Top level acceleration structure
vks : : initializers : : descriptorSetLayoutBinding ( VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR , VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR , 0 ) ,
// Binding 1: Ray tracing result image
vks : : initializers : : descriptorSetLayoutBinding ( VK_DESCRIPTOR_TYPE_STORAGE_IMAGE , VK_SHADER_STAGE_RAYGEN_BIT_KHR , 1 ) ,
// Binding 2: Uniform buffer
vks : : initializers : : descriptorSetLayoutBinding ( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR , 2 ) ,
// Binding 3: Texture image
vks : : initializers : : descriptorSetLayoutBinding ( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER , VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR , 3 ) ,
// Binding 4: Geometry node information SSBO
vks : : initializers : : descriptorSetLayoutBinding ( VK_DESCRIPTOR_TYPE_STORAGE_BUFFER , VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR , 4 ) ,
// Binding 5: All images used by the glTF model
vks : : initializers : : descriptorSetLayoutBinding ( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER , VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR , 5 , imageCount )
} ;
// Unbound set
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT setLayoutBindingFlags { } ;
setLayoutBindingFlags . sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT ;
setLayoutBindingFlags . bindingCount = 6 ;
std : : vector < VkDescriptorBindingFlagsEXT > descriptorBindingFlags = {
0 ,
0 ,
0 ,
0 ,
0 ,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
} ;
setLayoutBindingFlags . pBindingFlags = descriptorBindingFlags . data ( ) ;
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks : : initializers : : descriptorSetLayoutCreateInfo ( setLayoutBindings ) ;
descriptorSetLayoutCI . pNext = & setLayoutBindingFlags ;
VK_CHECK_RESULT ( vkCreateDescriptorSetLayout ( device , & descriptorSetLayoutCI , nullptr , & descriptorSetLayout ) ) ;
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks : : initializers : : pipelineLayoutCreateInfo ( & descriptorSetLayout , 1 ) ;
VK_CHECK_RESULT ( vkCreatePipelineLayout ( device , & pipelineLayoutCI , nullptr , & pipelineLayout ) ) ;
/*
Setup ray tracing shader groups
*/
std : : vector < VkPipelineShaderStageCreateInfo > shaderStages ;
// Ray generation group
{
shaderStages . push_back ( loadShader ( getShadersPath ( ) + " raytracinggltf/raygen.rgen.spv " , VK_SHADER_STAGE_RAYGEN_BIT_KHR ) ) ;
VkRayTracingShaderGroupCreateInfoKHR shaderGroup { } ;
shaderGroup . sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR ;
shaderGroup . type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR ;
shaderGroup . generalShader = static_cast < uint32_t > ( shaderStages . size ( ) ) - 1 ;
shaderGroup . closestHitShader = VK_SHADER_UNUSED_KHR ;
shaderGroup . anyHitShader = VK_SHADER_UNUSED_KHR ;
shaderGroup . intersectionShader = VK_SHADER_UNUSED_KHR ;
shaderGroups . push_back ( shaderGroup ) ;
}
// Miss group
{
shaderStages . push_back ( loadShader ( getShadersPath ( ) + " raytracinggltf/miss.rmiss.spv " , VK_SHADER_STAGE_MISS_BIT_KHR ) ) ;
VkRayTracingShaderGroupCreateInfoKHR shaderGroup { } ;
shaderGroup . sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR ;
shaderGroup . type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR ;
shaderGroup . generalShader = static_cast < uint32_t > ( shaderStages . size ( ) ) - 1 ;
shaderGroup . closestHitShader = VK_SHADER_UNUSED_KHR ;
shaderGroup . anyHitShader = VK_SHADER_UNUSED_KHR ;
shaderGroup . intersectionShader = VK_SHADER_UNUSED_KHR ;
shaderGroups . push_back ( shaderGroup ) ;
// Second shader for shadows
shaderStages . push_back ( loadShader ( getShadersPath ( ) + " raytracinggltf/shadow.rmiss.spv " , VK_SHADER_STAGE_MISS_BIT_KHR ) ) ;
shaderGroup . generalShader = static_cast < uint32_t > ( shaderStages . size ( ) ) - 1 ;
shaderGroups . push_back ( shaderGroup ) ;
}
// Closest hit group for doing texture lookups
{
shaderStages . push_back ( loadShader ( getShadersPath ( ) + " raytracinggltf/closesthit.rchit.spv " , VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR ) ) ;
VkRayTracingShaderGroupCreateInfoKHR shaderGroup { } ;
shaderGroup . sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR ;
shaderGroup . type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR ;
shaderGroup . generalShader = VK_SHADER_UNUSED_KHR ;
shaderGroup . closestHitShader = static_cast < uint32_t > ( shaderStages . size ( ) ) - 1 ;
shaderGroup . intersectionShader = VK_SHADER_UNUSED_KHR ;
// This group also uses an anyhit shader for doing transparency (see anyhit.rahit for details)
shaderStages . push_back ( loadShader ( getShadersPath ( ) + " raytracinggltf/anyhit.rahit.spv " , VK_SHADER_STAGE_ANY_HIT_BIT_KHR ) ) ;
shaderGroup . anyHitShader = static_cast < uint32_t > ( shaderStages . size ( ) ) - 1 ;
shaderGroups . push_back ( shaderGroup ) ;
}
/*
Create the ray tracing pipeline
*/
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI { } ;
rayTracingPipelineCI . sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR ;
rayTracingPipelineCI . stageCount = static_cast < uint32_t > ( shaderStages . size ( ) ) ;
rayTracingPipelineCI . pStages = shaderStages . data ( ) ;
rayTracingPipelineCI . groupCount = static_cast < uint32_t > ( shaderGroups . size ( ) ) ;
rayTracingPipelineCI . pGroups = shaderGroups . data ( ) ;
rayTracingPipelineCI . maxPipelineRayRecursionDepth = 1 ;
rayTracingPipelineCI . layout = pipelineLayout ;
VK_CHECK_RESULT ( vkCreateRayTracingPipelinesKHR ( device , VK_NULL_HANDLE , VK_NULL_HANDLE , 1 , & rayTracingPipelineCI , nullptr , & pipeline ) ) ;
}
/*
Create the descriptor sets used for the ray tracing dispatch
*/
void createDescriptorSets ( )
{
2024-02-12 10:23:56 +01:00
uint32_t imageCount = static_cast < uint32_t > ( model . textures . size ( ) ) ;
2023-11-01 10:55:33 +01:00
std : : vector < VkDescriptorPoolSize > poolSizes = {
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR , 1 } ,
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE , 1 } ,
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 1 } ,
2024-02-18 14:53:16 +01:00
{ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER , 1 } ,
{ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER , 1 } ,
2024-02-12 10:23:56 +01:00
{ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER , static_cast < uint32_t > ( model . textures . size ( ) ) }
2023-11-01 10:55:33 +01:00
} ;
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks : : initializers : : descriptorPoolCreateInfo ( poolSizes , 1 ) ;
VK_CHECK_RESULT ( vkCreateDescriptorPool ( device , & descriptorPoolCreateInfo , nullptr , & descriptorPool ) ) ;
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT variableDescriptorCountAllocInfo { } ;
uint32_t variableDescCounts [ ] = { imageCount } ;
variableDescriptorCountAllocInfo . sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT ;
variableDescriptorCountAllocInfo . descriptorSetCount = 1 ;
variableDescriptorCountAllocInfo . pDescriptorCounts = variableDescCounts ;
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks : : initializers : : descriptorSetAllocateInfo ( descriptorPool , & descriptorSetLayout , 1 ) ;
descriptorSetAllocateInfo . pNext = & variableDescriptorCountAllocInfo ;
VK_CHECK_RESULT ( vkAllocateDescriptorSets ( device , & descriptorSetAllocateInfo , & descriptorSet ) ) ;
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks : : initializers : : writeDescriptorSetAccelerationStructureKHR ( ) ;
descriptorAccelerationStructureInfo . accelerationStructureCount = 1 ;
descriptorAccelerationStructureInfo . pAccelerationStructures = & topLevelAS . handle ;
VkWriteDescriptorSet accelerationStructureWrite { } ;
accelerationStructureWrite . sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET ;
// The specialized acceleration structure descriptor has to be chained
accelerationStructureWrite . pNext = & descriptorAccelerationStructureInfo ;
accelerationStructureWrite . dstSet = descriptorSet ;
accelerationStructureWrite . dstBinding = 0 ;
accelerationStructureWrite . descriptorCount = 1 ;
accelerationStructureWrite . descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR ;
VkDescriptorImageInfo storageImageDescriptor { VK_NULL_HANDLE , storageImage . view , VK_IMAGE_LAYOUT_GENERAL } ;
std : : vector < VkWriteDescriptorSet > writeDescriptorSets = {
// Binding 0: Top level acceleration structure
accelerationStructureWrite ,
// Binding 1: Ray tracing result image
vks : : initializers : : writeDescriptorSet ( descriptorSet , VK_DESCRIPTOR_TYPE_STORAGE_IMAGE , 1 , & storageImageDescriptor ) ,
// Binding 2: Uniform data
2024-01-13 19:15:42 +01:00
vks : : initializers : : writeDescriptorSet ( descriptorSet , VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 2 , & uniformBuffer . descriptor ) ,
2023-11-01 10:55:33 +01:00
// Binding 4: Geometry node information SSBO
vks : : initializers : : writeDescriptorSet ( descriptorSet , VK_DESCRIPTOR_TYPE_STORAGE_BUFFER , 4 , & geometryNodesBuffer . descriptor ) ,
} ;
// Image descriptors for the image array
std : : vector < VkDescriptorImageInfo > textureDescriptors { } ;
for ( auto texture : model . textures ) {
VkDescriptorImageInfo descriptor { } ;
descriptor . imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL ;
descriptor . sampler = texture . sampler ; ;
descriptor . imageView = texture . view ;
textureDescriptors . push_back ( descriptor ) ;
}
VkWriteDescriptorSet writeDescriptorImgArray { } ;
writeDescriptorImgArray . sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET ;
writeDescriptorImgArray . dstBinding = 5 ;
writeDescriptorImgArray . descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ;
writeDescriptorImgArray . descriptorCount = imageCount ;
writeDescriptorImgArray . dstSet = descriptorSet ;
writeDescriptorImgArray . pImageInfo = textureDescriptors . data ( ) ;
writeDescriptorSets . push_back ( writeDescriptorImgArray ) ;
vkUpdateDescriptorSets ( device , static_cast < uint32_t > ( writeDescriptorSets . size ( ) ) , writeDescriptorSets . data ( ) , 0 , VK_NULL_HANDLE ) ;
}
/*
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
*/
void createUniformBuffer ( )
{
VK_CHECK_RESULT ( vulkanDevice - > createBuffer (
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT ,
2024-01-13 19:15:42 +01:00
& uniformBuffer ,
2023-11-01 10:55:33 +01:00
sizeof ( uniformData ) ,
& uniformData ) ) ;
2024-01-13 19:15:42 +01:00
VK_CHECK_RESULT ( uniformBuffer . map ( ) ) ;
2023-11-01 10:55:33 +01:00
updateUniformBuffers ( ) ;
}
/*
If the window has been resized , we need to recreate the storage image and it ' s descriptor
*/
void handleResize ( )
{
// Recreate image
createStorageImage ( swapChain . colorFormat , { width , height , 1 } ) ;
// Update descriptor
VkDescriptorImageInfo storageImageDescriptor { VK_NULL_HANDLE , storageImage . view , VK_IMAGE_LAYOUT_GENERAL } ;
VkWriteDescriptorSet resultImageWrite = vks : : initializers : : writeDescriptorSet ( descriptorSet , VK_DESCRIPTOR_TYPE_STORAGE_IMAGE , 1 , & storageImageDescriptor ) ;
vkUpdateDescriptorSets ( device , 1 , & resultImageWrite , 0 , VK_NULL_HANDLE ) ;
resized = false ;
}
/*
Command buffer generation
*/
void buildCommandBuffers ( )
{
if ( resized )
{
handleResize ( ) ;
}
VkCommandBufferBeginInfo cmdBufInfo = vks : : initializers : : commandBufferBeginInfo ( ) ;
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT , 0 , 1 , 0 , 1 } ;
for ( int32_t i = 0 ; i < drawCmdBuffers . size ( ) ; + + i )
{
VK_CHECK_RESULT ( vkBeginCommandBuffer ( drawCmdBuffers [ i ] , & cmdBufInfo ) ) ;
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline ( drawCmdBuffers [ i ] , VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR , pipeline ) ;
vkCmdBindDescriptorSets ( drawCmdBuffers [ i ] , VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR , pipelineLayout , 0 , 1 , & descriptorSet , 0 , 0 ) ;
VkStridedDeviceAddressRegionKHR emptySbtEntry = { } ;
vkCmdTraceRaysKHR (
drawCmdBuffers [ i ] ,
& shaderBindingTables . raygen . stridedDeviceAddressRegion ,
& shaderBindingTables . miss . stridedDeviceAddressRegion ,
& shaderBindingTables . hit . stridedDeviceAddressRegion ,
& emptySbtEntry ,
width ,
height ,
1 ) ;
/*
Copy ray tracing output to swap chain image
*/
// Prepare current swap chain image as transfer destination
vks : : tools : : setImageLayout (
drawCmdBuffers [ i ] ,
swapChain . images [ i ] ,
VK_IMAGE_LAYOUT_UNDEFINED ,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL ,
subresourceRange ) ;
// Prepare ray tracing output image as transfer source
vks : : tools : : setImageLayout (
drawCmdBuffers [ i ] ,
storageImage . image ,
VK_IMAGE_LAYOUT_GENERAL ,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL ,
subresourceRange ) ;
VkImageCopy copyRegion { } ;
copyRegion . srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT , 0 , 0 , 1 } ;
copyRegion . srcOffset = { 0 , 0 , 0 } ;
copyRegion . dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT , 0 , 0 , 1 } ;
copyRegion . dstOffset = { 0 , 0 , 0 } ;
copyRegion . extent = { width , height , 1 } ;
vkCmdCopyImage ( drawCmdBuffers [ i ] , storageImage . image , VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL , swapChain . images [ i ] , VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL , 1 , & copyRegion ) ;
// Transition swap chain image back for presentation
vks : : tools : : setImageLayout (
drawCmdBuffers [ i ] ,
swapChain . images [ i ] ,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL ,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR ,
subresourceRange ) ;
// Transition ray tracing output image back to general layout
vks : : tools : : setImageLayout (
drawCmdBuffers [ i ] ,
storageImage . image ,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL ,
VK_IMAGE_LAYOUT_GENERAL ,
subresourceRange ) ;
2024-03-19 21:59:25 +01:00
drawUI ( drawCmdBuffers [ i ] , frameBuffers [ i ] ) ;
2023-11-01 10:55:33 +01:00
VK_CHECK_RESULT ( vkEndCommandBuffer ( drawCmdBuffers [ i ] ) ) ;
}
}
void updateUniformBuffers ( )
{
uniformData . projInverse = glm : : inverse ( camera . matrices . perspective ) ;
uniformData . viewInverse = glm : : inverse ( camera . matrices . view ) ;
2023-11-28 20:01:12 +01:00
// This value is used to accumulate multiple frames into the finale picture
// It's required as ray tracing needs to do multiple passes for transparency
// In this sample we use noise offset by this frame index to shoot rays for transparency into different directions
// Once enough frames with random ray directions have been accumulated, it looks like proper transparency
2023-11-01 10:55:33 +01:00
uniformData . frame + + ;
2024-01-13 19:15:42 +01:00
memcpy ( uniformBuffer . mapped , & uniformData , sizeof ( uniformData ) ) ;
2023-11-01 10:55:33 +01:00
}
void getEnabledFeatures ( )
{
// Enable features required for ray tracing using feature chaining via pNext
enabledBufferDeviceAddresFeatures . sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES ;
enabledBufferDeviceAddresFeatures . bufferDeviceAddress = VK_TRUE ;
enabledRayTracingPipelineFeatures . sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR ;
enabledRayTracingPipelineFeatures . rayTracingPipeline = VK_TRUE ;
enabledRayTracingPipelineFeatures . pNext = & enabledBufferDeviceAddresFeatures ;
enabledAccelerationStructureFeatures . sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR ;
enabledAccelerationStructureFeatures . accelerationStructure = VK_TRUE ;
enabledAccelerationStructureFeatures . pNext = & enabledRayTracingPipelineFeatures ;
2023-11-19 11:15:21 +01:00
physicalDeviceDescriptorIndexingFeatures . sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT ;
physicalDeviceDescriptorIndexingFeatures . shaderSampledImageArrayNonUniformIndexing = VK_TRUE ;
physicalDeviceDescriptorIndexingFeatures . runtimeDescriptorArray = VK_TRUE ;
physicalDeviceDescriptorIndexingFeatures . descriptorBindingVariableDescriptorCount = VK_TRUE ;
physicalDeviceDescriptorIndexingFeatures . pNext = & enabledAccelerationStructureFeatures ;
deviceCreatepNextChain = & physicalDeviceDescriptorIndexingFeatures ;
2023-11-01 10:55:33 +01:00
enabledFeatures . samplerAnisotropy = VK_TRUE ;
}
void loadAssets ( )
{
vkglTF : : memoryPropertyFlags = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT ;
model . loadFromFile ( getAssetPath ( ) + " models/FlightHelmet/glTF/FlightHelmet.gltf " , vulkanDevice , queue ) ;
}
void prepare ( )
{
VulkanRaytracingSample : : prepare ( ) ;
loadAssets ( ) ;
// Create the acceleration structures used to render the ray traced scene
createBottomLevelAccelerationStructure ( ) ;
createTopLevelAccelerationStructure ( ) ;
createStorageImage ( swapChain . colorFormat , { width , height , 1 } ) ;
createUniformBuffer ( ) ;
createRayTracingPipeline ( ) ;
createShaderBindingTables ( ) ;
createDescriptorSets ( ) ;
buildCommandBuffers ( ) ;
prepared = true ;
}
void draw ( )
{
VulkanExampleBase : : prepareFrame ( ) ;
submitInfo . commandBufferCount = 1 ;
submitInfo . pCommandBuffers = & drawCmdBuffers [ currentBuffer ] ;
VK_CHECK_RESULT ( vkQueueSubmit ( queue , 1 , & submitInfo , VK_NULL_HANDLE ) ) ;
VulkanExampleBase : : submitFrame ( ) ;
}
virtual void render ( )
{
if ( ! prepared )
return ;
updateUniformBuffers ( ) ;
2024-01-13 19:15:42 +01:00
if ( camera . updated ) {
// If the camera's view has been updated we reset the frame accumulation
uniformData . frame = - 1 ;
}
2023-11-01 10:55:33 +01:00
draw ( ) ;
}
} ;
VULKAN_EXAMPLE_MAIN ( )