procedural-3d-engine/terraintessellation/terraintessellation.cpp

987 lines
33 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Dynamic terrain tessellation
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <algorithm>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <gli/gli.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "frustum.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_UV
};
class VulkanExample : public VulkanExampleBase
{
private:
struct {
vkTools::VulkanTexture heightMap;
vkTools::VulkanTexture skySphere;
vkTools::VulkanTexture terrainArray;
} textures;
public:
2016-06-20 20:17:46 +02:00
bool wireframe = false;
bool tessellation = true;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer terrain;
vkMeshLoader::MeshBuffer skysphere;
} meshes;
struct {
vkTools::UniformData terrainTessellation;
vkTools::UniformData skysphereVertex;
} uniformData;
// Shared values for tessellation control and evaluation stages
struct {
glm::mat4 projection;
glm::mat4 modelview;
glm::vec4 lightPos = glm::vec4(-48.0f, -40.0f, 46.0f, 0.0f);
glm::vec4 frustumPlanes[6];
float displacementFactor = 32.0f;
float tessellationFactor = 0.75f;
glm::vec2 viewportDim;
// Desired size of tessellated quad patch edge
float tessellatedEdgeSize = 20.0f;
} uboTess;
// Skysphere vertex shader stage
struct {
glm::mat4 mvp;
} uboVS;
struct {
VkPipeline terrain;
VkPipeline wireframe;
VkPipeline skysphere;
} pipelines;
struct {
VkDescriptorSetLayout terrain;
VkDescriptorSetLayout skysphere;
} descriptorSetLayouts;
struct {
VkPipelineLayout terrain;
VkPipelineLayout skysphere;
} pipelineLayouts;
struct {
VkDescriptorSet terrain;
VkDescriptorSet skysphere;
} descriptorSets;
// Pipeline statistics
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} queryResult;
VkQueryPool queryPool;
uint64_t pipelineStats[2] = { 0 };
// View frustum passed to tessellation control shader for culling
vkTools::Frustum frustum;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
enableTextOverlay = true;
title = "Vulkan Example - Dynamic terrain tessellation";
2016-06-20 20:17:46 +02:00
camera.type = Camera::CameraType::firstperson;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-12.0f, 159.0f, 0.0f));
camera.setTranslation(glm::vec3(18.0f, 22.5f, 57.5f));
2016-06-20 20:17:46 +02:00
camera.movementSpeed = 7.5f;
// Enable physical device features required for this example
// Tell the driver that we are going to use geometry shaders
enabledFeatures.tessellationShader = VK_TRUE;
// Example also uses a wireframe pipeline, enable non-solid fill modes
enabledFeatures.fillModeNonSolid = VK_TRUE;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.terrain, nullptr);
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
vkDestroyPipeline(device, pipelines.skysphere, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.skysphere, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.terrain, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.terrain, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.skysphere, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.terrain);
vkMeshLoader::freeMeshBufferResources(device, &meshes.skysphere);
vkDestroyBuffer(device, uniformData.terrainTessellation.buffer, nullptr);
vkFreeMemory(device, uniformData.terrainTessellation.memory, nullptr);
vkDestroyBuffer(device, uniformData.skysphereVertex.buffer, nullptr);
vkFreeMemory(device, uniformData.skysphereVertex.memory, nullptr);
textureLoader->destroyTexture(textures.heightMap);
textureLoader->destroyTexture(textures.skySphere);
textureLoader->destroyTexture(textures.terrainArray);
vkDestroyQueryPool(device, queryPool, nullptr);
vkDestroyBuffer(device, queryResult.buffer, nullptr);
vkFreeMemory(device, queryResult.memory, nullptr);
}
// Setup pool and buffer for storing pipeline statistics results
void setupQueryResultBuffer()
{
uint32_t bufSize = 2 * sizeof(uint64_t);
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkBufferCreateInfo bufferCreateInfo =
vkTools::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
bufSize);
// Results are saved in a host visible buffer for easy access by the application
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer));
vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0));
// Create query pool
VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
queryPoolInfo.queryType = VK_QUERY_TYPE_PIPELINE_STATISTICS;
queryPoolInfo.pipelineStatistics =
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT |
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT;
queryPoolInfo.queryCount = 2;
VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool));
}
// Retrieves the results of the pipeline statistics query submitted to the command buffer
void getQueryResults()
{
// We use vkGetQueryResults to copy the results into a host visible buffer
vkGetQueryPoolResults(
device,
queryPool,
0,
1,
sizeof(pipelineStats),
pipelineStats,
sizeof(uint64_t),
VK_QUERY_RESULT_64_BIT);
}
void loadTextures()
{
textureLoader->loadTexture(getAssetPath() + "textures/skysphere_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.skySphere);
// Height data is stored in a one-channel texture
textureLoader->loadTexture(getAssetPath() + "textures/terrain_heightmap_r16.ktx", VK_FORMAT_R16_UNORM, &textures.heightMap);
// Terrain textures are stored in a texture array with layers corresponding to terrain height
textureLoader->loadTextureArray(getAssetPath() + "textures/terrain_texturearray_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.terrainArray);
VkSamplerCreateInfo samplerInfo = vkTools::initializers::samplerCreateInfo();
// Setup a mirroring sampler for the height map
vkDestroySampler(device, textures.heightMap.sampler, nullptr);
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
samplerInfo.addressModeV = samplerInfo.addressModeU;
samplerInfo.addressModeW = samplerInfo.addressModeU;
samplerInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerInfo.minLod = 0.0f;
samplerInfo.maxLod = (float)textures.heightMap.mipLevels;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &textures.heightMap.sampler));
textures.heightMap.descriptor.sampler = textures.heightMap.sampler;
// Setup a repeating sampler for the terrain texture layers
vkDestroySampler(device, textures.terrainArray.sampler, nullptr);
samplerInfo = vkTools::initializers::samplerCreateInfo();
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = samplerInfo.addressModeU;
samplerInfo.addressModeW = samplerInfo.addressModeU;
samplerInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerInfo.minLod = 0.0f;
samplerInfo.maxLod = (float)textures.terrainArray.mipLevels;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
if (deviceFeatures.samplerAnisotropy)
{
samplerInfo.maxAnisotropy = 4.0f;
samplerInfo.anisotropyEnable = VK_TRUE;
}
VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &textures.terrainArray.sampler));
textures.terrainArray.descriptor.sampler = textures.terrainArray.sampler;
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { {0.2f, 0.2f, 0.2f, 0.0f} };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdResetQueryPool(drawCmdBuffers[i], queryPool, 0, 2);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f);
VkDeviceSize offsets[1] = { 0 };
// Skysphere
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skysphere);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.skysphere, 0, 1, &descriptorSets.skysphere, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skysphere.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skysphere.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skysphere.indexCount, 1, 0, 0, 0);
// Terrrain
// Begin pipeline statistics query
vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 0, VK_QUERY_CONTROL_PRECISE_BIT);
// Render
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.terrain);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.terrain, 0, 1, &descriptorSets.terrain, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.terrain.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.terrain.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.terrain.indexCount, 1, 0, 0, 0);
// End pipeline statistics query
vkCmdEndQuery(drawCmdBuffers[i], queryPool, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/geosphere.obj", &meshes.skysphere, vertexLayout, 1.0f);
}
// Encapsulate height map data for easy sampling
struct HeightMap
{
private:
uint16_t *heightdata;
uint32_t dim;
uint32_t scale;
public:
2016-06-25 22:49:22 +02:00
#if defined(__ANDROID__)
HeightMap(std::string filename, uint32_t patchsize, AAssetManager* assetManager)
#else
HeightMap(std::string filename, uint32_t patchsize)
2016-06-25 22:49:22 +02:00
#endif
{
2016-06-25 22:49:22 +02:00
#if defined(__ANDROID__)
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2D heightTex(gli::load((const char*)textureData, size));
free(textureData);
#else
gli::texture2D heightTex(gli::load(filename));
2016-06-25 22:49:22 +02:00
#endif
dim = static_cast<uint32_t>(heightTex.dimensions().x);
heightdata = new uint16_t[dim * dim];
memcpy(heightdata, heightTex.data(), heightTex.size());
this->scale = dim / patchsize;
};
~HeightMap()
{
delete[] heightdata;
}
float getHeight(uint32_t x, uint32_t y)
{
glm::ivec2 rpos = glm::ivec2(x, y) * glm::ivec2(scale);
rpos.x = std::max(0, std::min(rpos.x, (int)dim-1));
rpos.y = std::max(0, std::min(rpos.y, (int)dim-1));
rpos /= glm::ivec2(scale);
return *(heightdata + (rpos.x + rpos.y * dim) * scale) / 65535.0f;
}
};
// Generate a terrain quad patch for feeding to the tessellation control shader
void generateTerrain()
{
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
};
#define PATCH_SIZE 64
#define UV_SCALE 1.0f
Vertex *vertices = new Vertex[PATCH_SIZE * PATCH_SIZE * 4];
const float wx = 2.0f;
const float wy = 2.0f;
for (auto x = 0; x < PATCH_SIZE; x++)
{
for (auto y = 0; y < PATCH_SIZE; y++)
{
uint32_t index = (x + y * PATCH_SIZE);
vertices[index].pos[0] = x * wx + wx / 2.0f - (float)PATCH_SIZE * wx / 2.0f;
vertices[index].pos[1] = 0.0f;
vertices[index].pos[2] = y * wy + wy / 2.0f - (float)PATCH_SIZE * wy / 2.0f;
vertices[index].uv = glm::vec2((float)x / PATCH_SIZE, (float)y / PATCH_SIZE) * UV_SCALE;
}
}
// Calculate normals from height map using a sobel filter
2016-06-25 22:49:22 +02:00
#if defined(__ANDROID__)
HeightMap heightMap(getAssetPath() + "textures/terrain_heightmap_r16.ktx", PATCH_SIZE, androidApp->activity->assetManager);
#else
HeightMap heightMap(getAssetPath() + "textures/terrain_heightmap_r16.ktx", PATCH_SIZE);
2016-06-25 22:49:22 +02:00
#endif
for (auto x = 0; x < PATCH_SIZE; x++)
{
for (auto y = 0; y < PATCH_SIZE; y++)
{
// Get height samples centered around current position
float heights[3][3];
for (auto hx = -1; hx <= 1; hx++)
{
for (auto hy = -1; hy <= 1; hy++)
{
heights[hx+1][hy+1] = heightMap.getHeight(x + hx, y + hy);
}
}
// Calcualte the normal
glm::vec3 normal;
// Gx sobel filter
normal.x = heights[0][0] - heights[2][0] + 2.0f * heights[0][1] - 2.0f * heights[2][1] + heights[0][2] - heights[2][2];
// Gy sobel filter
normal.z = heights[0][0] + 2.0f * heights[1][0] + heights[2][0] - heights[0][2] - 2.0f * heights[1][2] - heights[2][2];
// Calculate missing up component of the normal using the filtered x and y axis
// The first value controls the bump strength
normal.y = 0.25f * sqrt( 1.0f - normal.x * normal.x - normal.z * normal.z);
vertices[x + y * PATCH_SIZE].normal = glm::normalize(normal * glm::vec3(2.0f, 1.0f, 2.0f));
}
}
// Indices
const uint32_t w = (PATCH_SIZE - 1);
uint32_t *indices = new uint32_t[w * w * 4];
for (auto x = 0; x < w; x++)
{
for (auto y = 0; y < w; y++)
{
uint32_t index = (x + y * w) * 4;
indices[index] = (x + y * PATCH_SIZE);
indices[index + 1] = indices[index] + PATCH_SIZE;
indices[index + 2] = indices[index + 1] + 1;
indices[index + 3] = indices[index] + 1;
}
}
meshes.terrain.indexCount = (PATCH_SIZE - 1) * (PATCH_SIZE - 1) * 4;
uint32_t vertexBufferSize = (PATCH_SIZE * PATCH_SIZE * 4) * sizeof(Vertex);
uint32_t indexBufferSize = (w * w * 4) * sizeof(uint32_t);
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
// Create staging buffers
// Vertex data
createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
vertexBufferSize,
vertices,
&vertexStaging.buffer,
&vertexStaging.memory);
// Index data
createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
indexBufferSize,
indices,
&indexStaging.buffer,
&indexStaging.memory);
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
nullptr,
&meshes.terrain.vertices.buf,
&meshes.terrain.vertices.mem);
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
nullptr,
&meshes.terrain.indices.buf,
&meshes.terrain.indices.mem);
// Copy from staging buffers
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
meshes.terrain.vertices.buf,
1,
&copyRegion);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
meshes.terrain.indices.buf,
1,
&copyRegion);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
vkFreeMemory(device, vertexStaging.memory, nullptr);
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
vkFreeMemory(device, indexStaging.memory, nullptr);
delete[] vertices;
delete[] indices;
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normals
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayouts()
{
VkDescriptorSetLayoutCreateInfo descriptorLayout;
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
// Terrain
setLayoutBindings =
{
// Binding 0 : Shared Tessellation shader ubo
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
0),
// Binding 1 : Height map
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 3 : Terrain texture array layers
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
};
descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.terrain));
pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.terrain, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.terrain));
// Skysphere
setLayoutBindings =
{
// Binding 0 : Vertex shader ubo
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Color map
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.skysphere));
pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.skysphere, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.skysphere));
}
void setupDescriptorSets()
{
VkDescriptorSetAllocateInfo allocInfo;
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Terrain
allocInfo = vkTools::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.terrain, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.terrain));
writeDescriptorSets =
{
// Binding 0 : Shared tessellation shader ubo
vkTools::initializers::writeDescriptorSet(
descriptorSets.terrain,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.terrainTessellation.descriptor),
// Binding 1 : Displacement map
vkTools::initializers::writeDescriptorSet(
descriptorSets.terrain,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.heightMap.descriptor),
// Binding 2 : Color map (alpha channel)
vkTools::initializers::writeDescriptorSet(
descriptorSets.terrain,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.terrainArray.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Skysphere
allocInfo = vkTools::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.skysphere, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skysphere));
writeDescriptorSets =
{
// Binding 0 : Vertex shader ubo
vkTools::initializers::writeDescriptorSet(
descriptorSets.skysphere,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.skysphereVertex.descriptor),
// Binding 1 : Fragment shader color map
vkTools::initializers::writeDescriptorSet(
descriptorSets.skysphere,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.skySphere.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// We render the terrain as a grid of quad patches
VkPipelineTessellationStateCreateInfo tessellationState =
vkTools::initializers::pipelineTessellationStateCreateInfo(4);
std::array<VkPipelineShaderStageCreateInfo, 4> shaderStages;
// Terrain tessellation pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shaderStages[2] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
shaderStages[3] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.terrain,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.pTessellationState = &tessellationState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.terrain));
// Terrain wireframe pipeline
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireframe));
// Skysphere pipeline
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
// Revert to triangle list topology
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
// Reset tessellation state
pipelineCreateInfo.pTessellationState = nullptr;
// Don't write to depth buffer
depthStencilState.depthWriteEnable = VK_FALSE;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.layout = pipelineLayouts.skysphere;
shaderStages[0] = loadShader(getAssetPath() + "shaders/terraintessellation/skysphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/terraintessellation/skysphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skysphere));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Shared tessellation shader stages uniform buffer
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboTess),
nullptr,
&uniformData.terrainTessellation.buffer,
&uniformData.terrainTessellation.memory,
&uniformData.terrainTessellation.descriptor);
// Skysphere vertex shader uniform buffer
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboVS),
nullptr,
&uniformData.skysphereVertex.buffer,
&uniformData.skysphereVertex.memory,
&uniformData.skysphereVertex.descriptor);
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Tessellation
uboTess.projection = camera.matrices.perspective;
uboTess.modelview = camera.matrices.view * glm::mat4();
uboTess.lightPos.y = -0.5f - uboTess.displacementFactor; // todo: Not uesed yet
uboTess.viewportDim = glm::vec2((float)width, (float)height);
frustum.update(uboTess.projection * uboTess.modelview);
memcpy(uboTess.frustumPlanes, frustum.planes.data(), sizeof(glm::vec4) * 6);
float savedFactor = uboTess.tessellationFactor;
if (!tessellation)
{
// Setting this to zero sets all tessellation factors to 1.0 in the shader
uboTess.tessellationFactor = 0.0f;
}
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.terrainTessellation.memory, 0, sizeof(uboTess), 0, (void **)&pData));
memcpy(pData, &uboTess, sizeof(uboTess));
vkUnmapMemory(device, uniformData.terrainTessellation.memory);
if (!tessellation)
{
uboTess.tessellationFactor = savedFactor;
}
// Skysphere vertex shader
uboVS.mvp = camera.matrices.perspective * glm::mat4(glm::mat3(camera.matrices.view));
VK_CHECK_RESULT(vkMapMemory(device, uniformData.skysphereVertex.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.skysphereVertex.memory);
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Read query results for displaying in next frame
getQueryResults();
VulkanExampleBase::submitFrame();
}
void prepare()
{
// Check if device supports tessellation shaders
if (!deviceFeatures.tessellationShader)
{
vkTools::exitFatal("Selected GPU does not support tessellation shaders!", "Feature not supported");
}
VulkanExampleBase::prepare();
loadMeshes();
loadTextures();
generateTerrain();
setupQueryResultBuffer();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayouts();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
void changeTessellationFactor(float delta)
{
uboTess.tessellationFactor += delta;
uboTess.tessellationFactor = fmax(0.25f, fmin(uboTess.tessellationFactor, 4.0f));
updateUniformBuffers();
updateTextOverlay();
}
void toggleWireframe()
{
wireframe = !wireframe;
reBuildCommandBuffers();
updateUniformBuffers();
}
void toggleTessellation()
{
tessellation = !tessellation;
updateUniformBuffers();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_KPADD:
case GAMEPAD_BUTTON_R1:
changeTessellationFactor(0.05f);
break;
case KEY_KPSUB:
case GAMEPAD_BUTTON_L1:
changeTessellationFactor(-0.05f);
break;
case KEY_F:
2016-06-20 20:04:28 +02:00
case GAMEPAD_BUTTON_A:
toggleWireframe();
break;
case KEY_T:
2016-06-20 20:04:28 +02:00
case GAMEPAD_BUTTON_X:
toggleTessellation();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
std::stringstream ss;
ss << std::setprecision(2) << std::fixed << uboTess.tessellationFactor;
#if defined(__ANDROID__)
textOverlay->addText("Tessellation factor: " + ss.str() + " (Buttons L1/R1)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
2016-06-20 20:04:28 +02:00
textOverlay->addText("Press \"Button A\" to toggle wireframe", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"Button X\" to toggle tessellation", 5.0f, 115.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("Tessellation factor: " + ss.str() + " (numpad +/-)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
2016-06-20 20:04:28 +02:00
textOverlay->addText("Press \"f\" to toggle wireframe", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"t\" to toggle tessellation", 5.0f, 115.0f, VulkanTextOverlay::alignLeft);
#endif
textOverlay->addText("pipeline stats:", width - 5.0f, 5.0f, VulkanTextOverlay::alignRight);
textOverlay->addText("VS:" + std::to_string(pipelineStats[0]), width - 5.0f, 20.0f, VulkanTextOverlay::alignRight);
textOverlay->addText("TE:" + std::to_string(pipelineStats[1]), width - 5.0f, 35.0f, VulkanTextOverlay::alignRight);
}
};
VULKAN_EXAMPLE_MAIN()