procedural-3d-engine/android/computeparticles/computeparticles.NativeActivity/computeparticles.cpp

823 lines
25 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Vulkan Example - Compute shader particle system
*
* Note :
* This is a basic android example. It may be integrated into the other examples at some point in the future.
* Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required
* already moved to the example base classes (e.g. swap chain)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <assert.h>
#include "vulkanandroid.h"
#include "vulkanswapchain.hpp"
#include "vulkanandroidbase.hpp"
2016-02-16 15:07:25 +01:00
#include <android/asset_manager.h>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
2016-02-16 15:07:25 +01:00
#include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp"
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define VERTEX_BUFFER_BIND_ID 0
#define PARTICLE_COUNT 4 * 1024
struct saved_state {
glm::vec3 rotation;
float zoom;
};
struct VulkanExample : public VulkanAndroidExampleBase
2016-02-16 15:07:25 +01:00
{
public:
2016-02-16 15:07:25 +01:00
int animating;
struct saved_state state;
float timer = 0.0f;
float animStart = 50.0f;
bool animate = true;
// Vulkan
struct Vertex {
float pos[3];
float uv[2];
};
Texture texture;
2016-02-16 15:07:25 +01:00
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VkPipelineLayout pipelineLayout;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
VkPipeline solid;
VkPipeline compute;
} pipelines;
VkQueue computeQueue;
VkCommandBuffer computeCmdBuffer;
VkPipelineLayout computePipelineLayout;
VkDescriptorSet computeDescriptorSet;
VkDescriptorSetLayout computeDescriptorSetLayout;
vkTools::UniformData computeStorageBuffer;
struct Particle {
glm::vec4 pos;
glm::vec4 col;
glm::vec4 vel;
};
struct {
float deltaT;
float destX;
float destY;
int32_t particleCount = PARTICLE_COUNT;
} computeUbo;
vkTools::UniformData uniformDataCompute;
void initVulkan()
{
VulkanAndroidExampleBase::initVulkan();
2016-02-16 15:07:25 +01:00
loadTexture(
"textures/android_robot.ktx",
VK_FORMAT_R8G8B8A8_UNORM,
&texture,
2016-02-16 15:07:25 +01:00
false);
createCommandBuffers();
2016-02-16 15:07:25 +01:00
// Compute stuff
getComputeQueue();
createComputeCommandBuffer();
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompute();
buildCommandBuffers();
buildComputeCommandBuffer();
state.zoom = -5.0f;
state.rotation = glm::vec3();
prepared = true;
}
void cleanupVulkan()
{
prepared = false;
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyPipelineLayout(device, computePipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyDescriptorSetLayout(device, computeDescriptorSetLayout, nullptr);
vkDestroyBuffer(device, uniformDataCompute.buffer, nullptr);
vkFreeMemory(device, uniformDataCompute.memory, nullptr);
vkDestroyBuffer(device, computeStorageBuffer.buffer, nullptr);
vkFreeMemory(device, computeStorageBuffer.memory, nullptr);
destroyTextureImage(&texture);
2016-02-16 15:07:25 +01:00
vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer);
VulkanExample::cleanUpVulkan();
2016-02-16 15:07:25 +01:00
}
// Find and create a compute capable device queue
void getComputeQueue()
{
uint32_t queueIndex = 0;
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps;
queueProps.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
for (queueIndex = 0; queueIndex < queueCount; queueIndex++)
{
if (queueProps[queueIndex].queueFlags & VK_QUEUE_COMPUTE_BIT)
break;
}
assert(queueIndex < queueCount);
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.queueFamilyIndex = queueIndex;
queueCreateInfo.queueCount = 1;
vkGetDeviceQueue(device, queueIndex, 0, &computeQueue);
}
void createComputeCommandBuffer()
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &computeCmdBuffer);
assert(!vkRes);
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();;
vkBeginCommandBuffer(computeCmdBuffer, &cmdBufInfo);
vkCmdBindPipeline(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelines.compute);
vkCmdBindDescriptorSets(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &computeDescriptorSet, 0, 0);
vkCmdDispatch(computeCmdBuffer, PARTICLE_COUNT / 16, 1, 1);
vkEndCommandBuffer(computeCmdBuffer);
}
void updateUniformBuffers()
{
computeUbo.deltaT = (1.0f / frameTimer) * 0.15f;
computeUbo.destX = sin(glm::radians(timer*360.0)) * 0.75f;
computeUbo.destY = cos(glm::radians(timer*360.0)) * 0.10f;
2016-02-16 15:07:25 +01:00
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataCompute.memory, 0, sizeof(computeUbo), 0, (void **)&pData);
assert(!err);
memcpy(pData, &computeUbo, sizeof(computeUbo));
vkUnmapMemory(device, uniformDataCompute.memory);
}
void prepareUniformBuffers()
{
// Prepare and initialize uniform buffer containing shader uniforms
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo = {};
VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo();
VkResult err;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(computeUbo);
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataCompute.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, uniformDataCompute.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataCompute.memory));
assert(!err);
err = vkBindBufferMemory(device, uniformDataCompute.buffer, uniformDataCompute.memory, 0);
assert(!err);
uniformDataCompute.descriptor.buffer = uniformDataCompute.buffer;
uniformDataCompute.descriptor.offset = 0;
uniformDataCompute.descriptor.range = sizeof(computeUbo);
updateUniformBuffers();
}
void preparePipelines()
{
VkResult err;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader("shaders/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("shaders/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
// Additive blending
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
2016-02-16 15:07:25 +01:00
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
2016-02-16 15:07:25 +01:00
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
}
// Setup and fill the compute shader storage buffers for
// vertex positions and velocities
void prepareStorageBuffers()
{
float destPosX = 0.0f;
float destPosY = 0.0f;
// Initial particle positions
std::vector<Particle> particleBuffer;
for (int i = 0; i < PARTICLE_COUNT; ++i)
{
// Position
float aspectRatio = (float)height / (float)width;
float rndVal = (float)rand() / (float)(RAND_MAX / (360.0f * 3.14f * 2.0f));
float rndRad = (float)rand() / (float)(RAND_MAX)* 0.65f;
Particle p;
p.pos = glm::vec4(
destPosX + cos(rndVal) * rndRad * aspectRatio,
destPosY + sin(rndVal) * rndRad,
0.0f,
1.0f);
p.col = glm::vec4(
(float)(rand() % 255) / 255.0f,
(float)(rand() % 255) / 255.0f,
(float)(rand() % 255) / 255.0f,
1.0f);
p.vel = glm::vec4(0.0f);
particleBuffer.push_back(p);
}
// Buffer size is the same for all storage buffers
uint32_t storageBufferSize = particleBuffer.size() * sizeof(Particle);
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Allocate and fill storage buffer object
VkBufferCreateInfo vBufferInfo =
vkTools::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
storageBufferSize);
err = vkCreateBuffer(device, &vBufferInfo, nullptr, &computeStorageBuffer.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, computeStorageBuffer.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &computeStorageBuffer.memory);
assert(!err);
err = vkMapMemory(device, computeStorageBuffer.memory, 0, storageBufferSize, 0, &data);
assert(!err);
memcpy(data, particleBuffer.data(), storageBufferSize);
vkUnmapMemory(device, computeStorageBuffer.memory);
err = vkBindBufferMemory(device, computeStorageBuffer.buffer, computeStorageBuffer.memory, 0);
assert(!err);
computeStorageBuffer.descriptor.buffer = computeStorageBuffer.buffer;
computeStorageBuffer.descriptor.offset = 0;
computeStorageBuffer.descriptor.range = storageBufferSize;
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Particle),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(2);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32A32_SFLOAT,
0);
// Location 1 : Color
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32A32_SFLOAT,
sizeof(float) * 4);
// Assign to vertex buffer
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void prepareCompute()
{
// Create compute pipeline
// Compute pipelines are created separate from graphics pipelines
// even if they use the same queue
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
setLayoutBindings.push_back(
// Binding 0 : Particle position storage buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
0));
setLayoutBindings.push_back(
// Binding 1 : Uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
1));
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(
device,
&descriptorLayout,
nullptr,
&computeDescriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&computeDescriptorSetLayout,
1);
err = vkCreatePipelineLayout(
device,
&pPipelineLayoutCreateInfo,
nullptr,
&computePipelineLayout);
assert(!err);
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&computeDescriptorSetLayout,
1);
err = vkAllocateDescriptorSets(device, &allocInfo, &computeDescriptorSet);
assert(!err);
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets;
computeWriteDescriptorSets.push_back(
// Binding 0 : Particle position storage buffer
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
0,
&computeStorageBuffer.descriptor));
computeWriteDescriptorSets.push_back(
// Binding 1 : Uniform buffer
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
&uniformDataCompute.descriptor));
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
// Create pipeline
VkComputePipelineCreateInfo computePipelineCreateInfo =
vkTools::initializers::computePipelineCreateInfo(
computePipelineLayout,
0);
computePipelineCreateInfo.stage = loadShader("shaders/particle.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
err = vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipelines.compute);
assert(!err);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes;
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1));
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1));
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1));
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
setLayoutBindings.push_back(
// Binding 0 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
0));
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
texture.sampler,
texture.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(
// Binding 0 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0,
2016-02-16 15:07:25 +01:00
&texDescriptor));
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
// Buffer memory barrier to make sure that compute shader
// writes are finished before using the storage buffer
// in the vertex shader
VkBufferMemoryBarrier bufferBarrier = vkTools::initializers::bufferMemoryBarrier();
// Source access : Compute shader buffer write
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
// Dest access : Vertex shader access (attribute binding)
bufferBarrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
bufferBarrier.buffer = computeStorageBuffer.buffer;
bufferBarrier.offset = 0;
bufferBarrier.size = computeStorageBuffer.descriptor.range;
bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
1, &bufferBarrier,
0, nullptr);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f
);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0
);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &computeStorageBuffer.buffer, offsets);
vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
2016-02-16 15:07:25 +01:00
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
VkPipelineStageFlags pipelineStages = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
2016-02-16 15:07:25 +01:00
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
2016-02-16 15:07:25 +01:00
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
submitInfo.pWaitDstStageMask = &pipelineStages;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &semaphores.submitSignal;
2016-02-16 15:07:25 +01:00
// Submit to the graphics queue
2016-02-16 15:07:25 +01:00
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
2016-02-16 15:07:25 +01:00
// Present the current buffer to the swap chain
// This will display the image
err = swapChain.queuePresent(queue, currentBuffer, semaphores.submitSignal);
2016-02-16 15:07:25 +01:00
assert(!err);
// Compute
VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &computeCmdBuffer;
err = vkQueueSubmit(computeQueue, 1, &computeSubmitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(computeQueue);
assert(!err);
}
void render()
{
// Render frame
if (prepared)
{
startTiming();
if (animating)
{
if (animStart > 0.0f)
{
animStart -= 0.15f * (1.0f / frameTimer);
}
if ((animate) & (animStart <= 0.0f))
{
timer += 0.5f * (1.0f / frameTimer);
if (timer > 1.0)
{
timer -= 1.0f;
}
}
updateUniformBuffers();
}
draw();
endTiming();
}
}
2016-02-16 15:07:25 +01:00
};
static int32_t handleInput(struct android_app* app, AInputEvent* event)
{
struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData;
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
{
// todo
return 1;
}
return 0;
}
static void handleCommand(struct android_app* app, int32_t cmd)
{
VulkanExample* vulkanExample = (VulkanExample*)app->userData;
switch (cmd)
{
case APP_CMD_SAVE_STATE:
vulkanExample->app->savedState = malloc(sizeof(struct saved_state));
*((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state;
vulkanExample->app->savedStateSize = sizeof(struct saved_state);
break;
case APP_CMD_INIT_WINDOW:
if (vulkanExample->app->window != NULL)
{
vulkanExample->initVulkan();
assert(vulkanExample->prepared);
}
break;
case APP_CMD_LOST_FOCUS:
vulkanExample->animating = 0;
break;
}
}
/**
* This is the main entry point of a native application that is using
* android_native_app_glue. It runs in its own thread, with its own
* event loop for receiving input events and doing other things.
*/
void android_main(struct android_app* state)
{
VulkanExample *engine = new VulkanExample();
state->userData = engine;
state->onAppCmd = handleCommand;
state->onInputEvent = handleInput;
engine->app = state;
engine->animating = 1;
// loop waiting for stuff to do.
while (1)
{
// Read all pending events.
int ident;
int events;
struct android_poll_source* source;
while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0)
{
if (source != NULL)
{
source->process(state, source);
}
if (state->destroyRequested != 0)
{
engine->cleanupVulkan();
return;
}
}
engine->render();
2016-02-16 15:07:25 +01:00
}
}