procedural-3d-engine/multithreading/multithreading.cpp

688 lines
21 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Multi threaded command buffer generation and rendering
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <thread>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout used in this example
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer ufo;
} meshes;
struct UBO {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f);
};
struct {
VkPipeline phong;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Multi threaded stuff
// Max. number of concurrent threads
uint32_t numThreads;
// Use push constants to update shader
// parameters on a per-thread base
struct ThreadPushConstantBlock {
glm::mat4 model;
glm::vec3 color;
};
struct MeshData {
glm::vec3 pos;
glm::vec3 rotation;
float deltaT;
vkMeshLoader::MeshBuffer *meshBuffer;
};
struct RenderThread {
uint32_t index;
std::thread thread;
ThreadPushConstantBlock pushConstantBlock;
MeshData meshData;
// Vulkan objects
VkCommandPool cmdPool;
std::vector<VkCommandBuffer> cmdBuffers;
VkViewport viewport;
VkRect2D scissor;
VkDevice device;
std::vector<VkCommandBufferInheritanceInfo> inheritanceInfo;
// todo : maybe move to mesh data if using different meshes per thread
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
UBO ubo;
vkTools::UniformData uniformData;
};
std::vector<RenderThread> renderThreads;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
width = 1280;
height = 720;
zoom = -20.0f;
zoomSpeed = 2.5f;
rotationSpeed = 0.5f;
rotation = { 0.0f, 0.0f, 0.0f };
title = "Vulkan Example - Multi threaded rendering";
// Get number of max. concurrrent threads
// todo : May not work on all compilers (e.g. old GCC versions?)
numThreads = std::thread::hardware_concurrency();
assert(numThreads > 0);
// todo : test, remove
std::cout << "numThreads = " << numThreads << std::endl;
srand(time(NULL));
numThreads *= 4; // todo : test
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.phong, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.ufo);
for (auto& thread : renderThreads)
{
vkFreeCommandBuffers(device, thread.cmdPool, thread.cmdBuffers.size(), thread.cmdBuffers.data());
vkDestroyCommandPool(device, thread.cmdPool, nullptr);
vkTools::destroyUniformData(device, &thread.uniformData);
}
}
// Update thread's uniform buffer
static void threadUpdate(RenderThread *thread)
{
// Update
thread->meshData.rotation.y += 0.15f;
if (thread->meshData.rotation.y > 360.0f)
thread->meshData.rotation.y -= 360.0f;
thread->meshData.deltaT += 0.0005f;
if (thread->meshData.deltaT > 1.0f)
thread->meshData.deltaT -= 1.0f;
thread->meshData.pos.y = sin(glm::radians(thread->meshData.deltaT * 360.0f)) * 1.5f;
thread->ubo.model = glm::translate(glm::mat4(), thread->meshData.pos);
thread->ubo.model = glm::rotate(thread->ubo.model, -sinf(glm::radians(thread->meshData.deltaT * 360.0f)) * 0.25f, glm::vec3(1.0f, 0.0f, 0.0f));
thread->ubo.model = glm::rotate(thread->ubo.model, glm::radians(thread->meshData.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
thread->ubo.model = glm::rotate(thread->ubo.model, glm::radians(thread->meshData.deltaT * 360.0f), glm::vec3(0.0f, 1.0f, 0.0f));
uint8_t *pData;
VkResult err = vkMapMemory(thread->device, thread->uniformData.memory, 0, sizeof(UBO), 0, (void **)&pData);
assert(!err);
memcpy(pData, &thread->ubo, sizeof(UBO));
vkUnmapMemory(thread->device, thread->uniformData.memory);
}
// Update command buffer
static void threadSetup(RenderThread *thread)
{
// Push constant block
// Color
// todo : randomize
thread->pushConstantBlock.color = glm::vec3(1.0f, 1.0f, 1.0f);
// Model matrix
glm::mat4 modelMat = glm::translate(glm::mat4(), thread->meshData.pos);
modelMat = glm::rotate(modelMat, -sinf(glm::radians(thread->meshData.deltaT * 360.0f)) * 0.25f, glm::vec3(1.0f, 0.0f, 0.0f));
modelMat = glm::rotate(modelMat, glm::radians(thread->meshData.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
modelMat = glm::rotate(modelMat, glm::radians(thread->meshData.deltaT * 360.0f), glm::vec3(0.0f, 1.0f, 0.0f));
thread->pushConstantBlock.model = modelMat;
// Fill command buffers
for (uint32_t i = 0; i < thread->cmdBuffers.size(); ++i)
{
VkCommandBufferBeginInfo beginInfo = vkTools::initializers::commandBufferBeginInfo();
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
beginInfo.pInheritanceInfo = &thread->inheritanceInfo[i];
vkBeginCommandBuffer(thread->cmdBuffers[i], &beginInfo);
vkCmdSetViewport(thread->cmdBuffers[i], 0, 1, &thread->viewport);
vkCmdSetScissor(thread->cmdBuffers[i], 0, 1, &thread->scissor);
// Update shader push constant block
// Contains model view matrix
vkCmdPushConstants(
thread->cmdBuffers[i],
thread->pipelineLayout,
VK_SHADER_STAGE_VERTEX_BIT,
0,
sizeof(ThreadPushConstantBlock),
&thread->pushConstantBlock);
vkCmdBindPipeline(thread->cmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, thread->pipeline);
vkCmdBindDescriptorSets(thread->cmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, thread->pipelineLayout, 0, 1, &thread->descriptorSet, 0, NULL);
// Render mesh
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(thread->cmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &thread->meshData.meshBuffer->vertices.buf, offsets);
vkCmdBindIndexBuffer(thread->cmdBuffers[i], thread->meshData.meshBuffer->indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(thread->cmdBuffers[i], thread->meshData.meshBuffer->indexCount, 1, 0, 0, 0);
vkEndCommandBuffer(thread->cmdBuffers[i]);
}
}
// Create all threads and initialize shader push constants
void prepareMultiThreadedRenderer()
{
VkResult err;
renderThreads.resize(numThreads);
uint32_t index = 0;
for (auto& thread : renderThreads)
{
thread.index = index;
// Create command pool
VkCommandPoolCreateInfo cmdPoolInfo = vkTools::initializers::commandPoolCreateInfo();
cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
err = vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &thread.cmdPool);
assert(!err);
// Create command buffers
// Use secondary level command buffers
thread.cmdBuffers.resize(swapChain.imageCount);
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
thread.cmdPool,
VK_COMMAND_BUFFER_LEVEL_SECONDARY,
(uint32_t)thread.cmdBuffers.size());
err = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, thread.cmdBuffers.data());
assert(!err);
// Vulkan objects
thread.device = device;
// todo...
thread.viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
thread.viewport.width = (float)width / (float)numThreads;
thread.viewport.height = (float)height;
thread.viewport.x = thread.viewport.width * thread.index;
thread.scissor = vkTools::initializers::rect2D(width, height, 0, 0);
thread.pipeline = pipelines.phong;
thread.pipelineLayout = pipelineLayout;
// Inheritance info for secondary command buffers
for (uint32_t i = 0; i < thread.cmdBuffers.size(); ++i)
{
VkCommandBufferInheritanceInfo inheritanceInfo = vkTools::initializers::commandBufferInheritanceInfo();
inheritanceInfo.renderPass = renderPass;
inheritanceInfo.framebuffer = frameBuffers[i];
thread.inheritanceInfo.push_back(inheritanceInfo);
}
// Separate vertex shader uniform buffer block for each thread
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(UBO),
&thread.ubo,
&thread.uniformData.buffer,
&thread.uniformData.memory,
&thread.uniformData.descriptor);
// Descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &thread.descriptorSet);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
thread.descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&thread.uniformData.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Initialize mesh data
thread.meshData.pos = glm::vec3(0.0f, 0.0f, 0.0f);
// thread.meshData.pos = glm::vec3((float)index * 4.0f - (float)(numThreads - 1) * 2.0f, 0.0f, 0.0f);
thread.meshData.rotation = glm::vec3(0.0f, (float)(rand() % 360), 0.0f);
thread.meshData.deltaT = (float)(rand() % 255) / 255.0f;
// todo : different models (and multiple meshes) per thread
thread.meshData.meshBuffer = &meshes.ufo;
// Create thread
thread.thread = std::thread(VulkanExample::threadSetup, &thread);
index++;
}
for (auto& thread : renderThreads)
{
thread.thread.join();
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { {0.0f, 0.0f, 0.2f, 0.0f} };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
// The primary command buffer does not contain any rendering commands
// These are stored (and retrieved) from the secondary command buffers
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS);
// Execute secondary command buffers
for (auto& renderThread : renderThreads)
{
// todo : Make sure threads are finished before accessing their command buffers
vkCmdExecuteCommands(drawCmdBuffers[i], 1, &renderThread.cmdBuffers[i]);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
if (!paused)
{
updateUniformBuffers();
}
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Put a fence in here
// todo : reuse
VkFence renderFence = {};
VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE);
vkCreateFence(device, &fenceCreateInfo, NULL, &renderFence);
// Submit draw command buffer
err = vkQueueSubmit(queue, 1, &submitInfo, renderFence);
assert(!err);
// Wait for fence to signal that all command buffers are ready
do
{
err = vkWaitForFences(device, 1, &renderFence, VK_TRUE, 100000000);
} while (err == VK_TIMEOUT);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
vkDestroyFence(device, renderFence, nullptr);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void loadMeshes()
{
loadMesh("./../data/models/retroufo_red.X", &meshes.ufo, vertexLayout, 0.25f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 3 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3 + numThreads)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3 + numThreads);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
// Push constants for model matrices
VkPushConstantRange pushConstantRange =
vkTools::initializers::pushConstantRange(
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
sizeof(glm::mat4),
0);
// Push constant ranges are part of the pipeline layout
pPipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader("./../data/shaders/multithreading/phong.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/multithreading/phong.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.phong);
assert(!err);
}
void updateUniformBuffers()
{
glm::mat4 projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
glm::mat4 view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
view = glm::rotate(view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
view = glm::rotate(view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
view = glm::rotate(view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
for (auto& thread : renderThreads)
{
//thread.ubo.projection = projection;
thread.ubo.projection = glm::perspective(glm::radians(60.0f), (float)thread.viewport.width / (float)thread.viewport.height, 0.1f, 256.0f);
thread.ubo.view = view;
thread.thread = std::thread(VulkanExample::threadUpdate, &thread);
}
for (auto& thread : renderThreads)
{
thread.thread.join();
}
}
void prepare()
{
VulkanExampleBase::prepare();
loadMeshes();
setupVertexDescriptions();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
prepareMultiThreadedRenderer();
updateUniformBuffers();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
if (paused)
{
updateUniformBuffers();
}
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}