procedural-3d-engine/examples/hostimagecopy/hostimagecopy.cpp

506 lines
23 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Host image copy using VK_EXT_host_image_copy
*
* This sample shows how to use host image copies to directly upload an image to the devic without having to use staging
*
* Work-in-progress
*
* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include <ktx.h>
#include <ktxvulkan.h>
class VulkanExample : public VulkanExampleBase
{
public:
// Pointers for functions added by the host image copy extension;
PFN_vkCopyMemoryToImageEXT vkCopyMemoryToImageEXT{ nullptr };
PFN_vkTransitionImageLayoutEXT vkTransitionImageLayoutEXT{ nullptr };
VkPhysicalDeviceHostImageCopyFeaturesEXT enabledPhysicalDeviceHostImageCopyFeaturesEXT{};
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
float normal[3];
};
// Contains all Vulkan objects that are required to store and use a texture
struct Texture {
VkSampler sampler{ VK_NULL_HANDLE };
VkImage image{ VK_NULL_HANDLE };
VkDeviceMemory deviceMemory{ VK_NULL_HANDLE };
VkImageView view{ VK_NULL_HANDLE };
uint32_t width{ 0 };
uint32_t height{ 0 };
uint32_t mipLevels{ 0 };
} texture;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount{ 0 };
struct UniformData {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 viewPos;
float lodBias = 0.0f;
} uniformData;
vks::Buffer uniformBuffer;
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VulkanExample() : VulkanExampleBase()
{
title = "Host image copy";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
// Enable required extensions
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_FORMAT_FEATURE_FLAGS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_COPY_COMMANDS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_HOST_IMAGE_COPY_EXTENSION_NAME);
// Enable host image copy feature
enabledPhysicalDeviceHostImageCopyFeaturesEXT.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_FEATURES_EXT;
enabledPhysicalDeviceHostImageCopyFeaturesEXT.hostImageCopy = VK_TRUE;
deviceCreatepNextChain = &enabledPhysicalDeviceHostImageCopyFeaturesEXT;
}
~VulkanExample()
{
if (device) {
destroyTextureImage(texture);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBuffer.destroy();
}
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
/*
Upload texture image data to the GPU
2024-06-20 17:32:25 +02:00
Unlike the texture(3d/array/etc) samples, this one uses the VK_EXT_host_image_copy to drasticly simplify the process
of uploading an image from the host to the GPU. This new extension adds a way of directly uploading image data from
host memory to an optimal tiled image on the device (GPU). This no longer requires a staging buffer in between, as we can
now directly copy data stored in host memory to the image. The extension also adds new functionality to simplfy image barriers
*/
void loadTexture()
{
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
std::string filename = getAssetPath() + "textures/metalplate01_rgba.ktx";
ktxResult result;
ktxTexture* ktxTexture;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
// Get properties required for using and upload texture data from the ktx texture object
texture.width = ktxTexture->baseWidth;
texture.height = ktxTexture->baseHeight;
texture.mipLevels = ktxTexture->numLevels;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
// Create optimal tiled target image on the device
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
2024-06-20 17:32:25 +02:00
imageCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
2024-06-20 17:32:25 +02:00
// For images that use host image copy we need to specify the VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT usage flag
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs = {};
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
2024-06-20 17:32:25 +02:00
// With host image copy we can directly copy from the KTX image in host memory to the device
// This is pretty straight forward, as the KTX image is already tightly packed, doesn't need and swizzle and as such matches
// what the device expects
// Set up copy information for all mip levels stored in the image
std::vector<VkMemoryToImageCopyEXT> memoryToImageCopies{};
for (uint32_t i = 0; i < texture.mipLevels; i++) {
// Setup a buffer image copy structure for the current mip level
VkMemoryToImageCopyEXT memoryToImageCopy = {};
memoryToImageCopy.sType = VK_STRUCTURE_TYPE_MEMORY_TO_IMAGE_COPY_EXT;
memoryToImageCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
memoryToImageCopy.imageSubresource.mipLevel = i;
memoryToImageCopy.imageSubresource.baseArrayLayer = 0;
memoryToImageCopy.imageSubresource.layerCount = 1;
memoryToImageCopy.imageExtent.width = ktxTexture->baseWidth >> i;
memoryToImageCopy.imageExtent.height = ktxTexture->baseHeight >> i;
memoryToImageCopy.imageExtent.depth = 1;
2024-06-20 17:32:25 +02:00
// This tells the implementation where to read the data from
// As the KTX file is tightly packed, we can simply offset into that buffer for the current mip level
ktx_size_t offset;
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset);
assert(ret == KTX_SUCCESS);
memoryToImageCopy.pHostPointer = ktxTextureData + offset;
memoryToImageCopies.push_back(memoryToImageCopy);
}
VkImageSubresourceRange subresourceRange{};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = texture.mipLevels;
subresourceRange.layerCount = 1;
2024-06-20 17:32:25 +02:00
// VK_EXT_host_image_copy als introduces a simplified way of doing the required image transition on the host
// This no longer requires a dedicated command buffer to submit the barrier
// We also no longer need multiple transitions, and only have to do one for the final layout
VkHostImageLayoutTransitionInfoEXT hostImageLayoutTransitionInfo{};
hostImageLayoutTransitionInfo.sType = VK_STRUCTURE_TYPE_HOST_IMAGE_LAYOUT_TRANSITION_INFO_EXT;
hostImageLayoutTransitionInfo.image = texture.image;
hostImageLayoutTransitionInfo.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
hostImageLayoutTransitionInfo.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
hostImageLayoutTransitionInfo.subresourceRange = subresourceRange;
vkTransitionImageLayoutEXT(device, 1, &hostImageLayoutTransitionInfo);
2024-06-20 17:32:25 +02:00
// With the image in the correct layout and copy information for all mip levels setup, we can now issue the copy to our taget image from the host
// The implementation will then convert this to an implementation specific optimal tiling layout
VkCopyMemoryToImageInfoEXT copyMemoryInfo{};
copyMemoryInfo.sType = VK_STRUCTURE_TYPE_COPY_MEMORY_TO_IMAGE_INFO_EXT;
copyMemoryInfo.dstImage = texture.image;
copyMemoryInfo.dstImageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
copyMemoryInfo.regionCount = static_cast<uint32_t>(memoryToImageCopies.size());
copyMemoryInfo.pRegions = memoryToImageCopies.data();
vkCopyMemoryToImageEXT(device, &copyMemoryInfo);
ktxTexture_Destroy(ktxTexture);
// Create a texture sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = (float)texture.mipLevels;
2024-06-20 17:32:25 +02:00
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
2024-06-20 17:32:25 +02:00
view.format = VK_FORMAT_R8G8B8A8_UNORM;
view.subresourceRange = subresourceRange;
view.image = texture.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
}
// Free all Vulkan resources used by a texture object
void destroyTextureImage(Texture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
vkDestroyImage(device, texture.image, nullptr);
vkDestroySampler(device, texture.sampler, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
// Creates a vertex and index buffer for a quad made of two triangles
// This is used to display the texture on
void generateQuad()
{
// Setup vertices for a single uv-mapped quad made from two triangles
std::vector<Vertex> vertices =
{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers and upload data to the GPU
struct StagingBuffers {
vks::Buffer vertices;
vks::Buffer indices;
} stagingBuffers;
// Host visible source buffers (staging)
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data()));
// Device local destination buffers
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t)));
// Copy from host do device
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue);
vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue);
// Clean up
stagingBuffers.vertices.destroy();
stagingBuffers.indices.destroy();
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Setup a descriptor image info for the current texture to be used as a combined image sampler
VkDescriptorImageInfo textureDescriptor;
textureDescriptor.imageView = texture.view;
textureDescriptor.sampler = texture.sampler;
textureDescriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
// Binding 1 : Fragment shader texture sampler
2024-06-20 17:32:25 +02:00
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
// Shaders
shaderStages[0] = loadShader(getShadersPath() + "texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Vertex input state
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX)
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)),
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &vertexInputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData));
VK_CHECK_RESULT(uniformBuffer.map());
}
void updateUniformBuffers()
{
uniformData.projection = camera.matrices.perspective;
uniformData.modelView = camera.matrices.view;
uniformData.viewPos = camera.viewPos;
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
}
void prepare()
{
VulkanExampleBase::prepare();
// Get the function pointers required host image copies
vkCopyMemoryToImageEXT = reinterpret_cast<PFN_vkCopyMemoryToImageEXT>(vkGetDeviceProcAddr(device, "vkCopyMemoryToImageEXT"));
vkTransitionImageLayoutEXT = reinterpret_cast<PFN_vkTransitionImageLayoutEXT>(vkGetDeviceProcAddr(device, "vkTransitionImageLayoutEXT"));
loadTexture();
generateQuad();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("LOD bias", &uniformData.lodBias, 0.0f, (float)texture.mipLevels)) {
updateUniformBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()