Code cleanup, restructuring. code comments
This commit is contained in:
parent
6740aae4d9
commit
11bef52edc
5 changed files with 176 additions and 404 deletions
|
|
@ -1,14 +1,18 @@
|
|||
/*
|
||||
* Vulkan Example - Compute shader N-body simulation using two passes and shared compute shader memory
|
||||
*
|
||||
* Copyright (C) by Sascha Willems - www.saschawillems.de
|
||||
* This sample shows how to combine compute and graphics for doing N-body particle simulaton
|
||||
* It calculates the particle system movement using two separate compute passes: calculating particle positions and integrating particles
|
||||
* For that a shader storage buffer is used which is then used as a vertex buffer for drawing the particle system with a graphics pipeline
|
||||
* To optimize performance, the compute shaders use shared memory
|
||||
*
|
||||
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include "vulkanexamplebase.h"
|
||||
|
||||
#define VERTEX_BUFFER_BIND_ID 0
|
||||
#if defined(__ANDROID__)
|
||||
// Lower particle count on Android for performance reasons
|
||||
#define PARTICLES_PER_ATTRACTOR 3 * 1024
|
||||
|
|
@ -19,40 +23,41 @@
|
|||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
uint32_t numParticles;
|
||||
|
||||
struct {
|
||||
struct Textures {
|
||||
vks::Texture2D particle;
|
||||
vks::Texture2D gradient;
|
||||
} textures;
|
||||
} textures{};
|
||||
|
||||
struct {
|
||||
VkPipelineVertexInputStateCreateInfo inputState;
|
||||
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
||||
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
||||
} vertices;
|
||||
// Particle Definition
|
||||
struct Particle {
|
||||
glm::vec4 pos; // xyz = position, w = mass
|
||||
glm::vec4 vel; // xyz = velocity, w = gradient texture position
|
||||
};
|
||||
uint32_t numParticles{ 0 };
|
||||
|
||||
// We use a shader storage buffer object to store the particlces
|
||||
// This is updated by the compute pipeline and displayed as a vertex buffer by the graphics pipeline
|
||||
vks::Buffer storageBuffer;
|
||||
|
||||
// Resources for the graphics part of the example
|
||||
struct {
|
||||
struct Graphics {
|
||||
uint32_t queueFamilyIndex; // Used to check if compute and graphics queue families differ and require additional barriers
|
||||
vks::Buffer uniformBuffer; // Contains scene matrices
|
||||
VkDescriptorSetLayout descriptorSetLayout; // Particle system rendering shader binding layout
|
||||
VkDescriptorSet descriptorSet; // Particle system rendering shader bindings
|
||||
VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline
|
||||
VkPipeline pipeline; // Particle rendering pipeline
|
||||
VkSemaphore semaphore; // Execution dependency between compute & graphic submission
|
||||
struct {
|
||||
struct UniformData {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 view;
|
||||
glm::vec2 screenDim;
|
||||
} ubo;
|
||||
} uniformData;
|
||||
vks::Buffer uniformBuffer; // Contains scene matrices
|
||||
} graphics;
|
||||
|
||||
// Resources for the compute part of the example
|
||||
struct {
|
||||
struct Compute {
|
||||
uint32_t queueFamilyIndex; // Used to check if compute and graphics queue families differ and require additional barriers
|
||||
vks::Buffer storageBuffer; // (Shader) storage buffer object containing the particles
|
||||
vks::Buffer uniformBuffer; // Uniform buffer object containing particle system parameters
|
||||
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
|
||||
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
|
||||
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
|
||||
|
|
@ -62,22 +67,17 @@ public:
|
|||
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
|
||||
VkPipeline pipelineCalculate; // Compute pipeline for N-Body velocity calculation (1st pass)
|
||||
VkPipeline pipelineIntegrate; // Compute pipeline for euler integration (2nd pass)
|
||||
VkPipeline blur;
|
||||
VkPipelineLayout pipelineLayoutBlur;
|
||||
VkDescriptorSetLayout descriptorSetLayoutBlur;
|
||||
VkDescriptorSet descriptorSetBlur;
|
||||
struct computeUBO { // Compute shader uniform block object
|
||||
float deltaT; // Frame delta time
|
||||
int32_t particleCount;
|
||||
} ubo;
|
||||
struct UniformData { // Compute shader uniform block object
|
||||
float deltaT{ 0.0f }; // Frame delta time
|
||||
int32_t particleCount{ 0 };
|
||||
// Parameters used to control the behaviour of the particle system
|
||||
float gravity{ 0.002f };
|
||||
float power{ 0.75f };
|
||||
float soften{ 0.05f };
|
||||
} uniformData;
|
||||
vks::Buffer uniformBuffer; // Uniform buffer object containing particle system parameters
|
||||
} compute;
|
||||
|
||||
// SSBO particle declaration
|
||||
struct Particle {
|
||||
glm::vec4 pos; // xyz = position, w = mass
|
||||
glm::vec4 vel; // xyz = velocity, w = gradient texture position
|
||||
};
|
||||
|
||||
VulkanExample() : VulkanExampleBase()
|
||||
{
|
||||
title = "Compute shader N-body system";
|
||||
|
|
@ -90,25 +90,28 @@ public:
|
|||
|
||||
~VulkanExample()
|
||||
{
|
||||
// Graphics
|
||||
graphics.uniformBuffer.destroy();
|
||||
vkDestroyPipeline(device, graphics.pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
|
||||
vkDestroySemaphore(device, graphics.semaphore, nullptr);
|
||||
if (device) {
|
||||
// Graphics
|
||||
graphics.uniformBuffer.destroy();
|
||||
vkDestroyPipeline(device, graphics.pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
|
||||
vkDestroySemaphore(device, graphics.semaphore, nullptr);
|
||||
|
||||
// Compute
|
||||
compute.storageBuffer.destroy();
|
||||
compute.uniformBuffer.destroy();
|
||||
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
||||
vkDestroyPipeline(device, compute.pipelineCalculate, nullptr);
|
||||
vkDestroyPipeline(device, compute.pipelineIntegrate, nullptr);
|
||||
vkDestroySemaphore(device, compute.semaphore, nullptr);
|
||||
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
||||
// Compute
|
||||
compute.uniformBuffer.destroy();
|
||||
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
||||
vkDestroyPipeline(device, compute.pipelineCalculate, nullptr);
|
||||
vkDestroyPipeline(device, compute.pipelineIntegrate, nullptr);
|
||||
vkDestroySemaphore(device, compute.semaphore, nullptr);
|
||||
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
||||
|
||||
textures.particle.destroy();
|
||||
textures.gradient.destroy();
|
||||
storageBuffer.destroy();
|
||||
|
||||
textures.particle.destroy();
|
||||
textures.gradient.destroy();
|
||||
}
|
||||
}
|
||||
|
||||
void loadAssets()
|
||||
|
|
@ -152,9 +155,9 @@ public:
|
|||
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
|
||||
compute.queueFamilyIndex,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.storageBuffer.buffer,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
compute.storageBuffer.size
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
|
|
@ -180,7 +183,7 @@ public:
|
|||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, nullptr);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &compute.storageBuffer.buffer, offsets);
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &storageBuffer.buffer, offsets);
|
||||
vkCmdDraw(drawCmdBuffers[i], numParticles, 1, 0, 0);
|
||||
|
||||
drawUI(drawCmdBuffers[i]);
|
||||
|
|
@ -198,9 +201,9 @@ public:
|
|||
0,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.queueFamilyIndex,
|
||||
compute.storageBuffer.buffer,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
compute.storageBuffer.size
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
|
|
@ -235,9 +238,9 @@ public:
|
|||
VK_ACCESS_SHADER_WRITE_BIT,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.queueFamilyIndex,
|
||||
compute.storageBuffer.buffer,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
compute.storageBuffer.size
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
|
|
@ -258,8 +261,8 @@ public:
|
|||
|
||||
// Add memory barrier to ensure that the computer shader has finished writing to the buffer
|
||||
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
|
||||
bufferBarrier.buffer = compute.storageBuffer.buffer;
|
||||
bufferBarrier.size = compute.storageBuffer.descriptor.range;
|
||||
bufferBarrier.buffer = storageBuffer.buffer;
|
||||
bufferBarrier.size = storageBuffer.descriptor.range;
|
||||
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
||||
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
||||
// Transfer ownership if compute and graphics queue family indices differ
|
||||
|
|
@ -291,9 +294,9 @@ public:
|
|||
0,
|
||||
compute.queueFamilyIndex,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.storageBuffer.buffer,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
compute.storageBuffer.size
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
|
|
@ -312,12 +315,7 @@ public:
|
|||
// Setup and fill the compute shader storage buffers containing the particles
|
||||
void prepareStorageBuffers()
|
||||
{
|
||||
#if 0
|
||||
std::vector<glm::vec3> attractors = {
|
||||
glm::vec3(2.5f, 1.5f, 0.0f),
|
||||
glm::vec3(-2.5f, -1.5f, 0.0f),
|
||||
};
|
||||
#else
|
||||
// We mark a few particles as attractors that move along a given path, these will pull in the other particles
|
||||
std::vector<glm::vec3> attractors = {
|
||||
glm::vec3(5.0f, 0.0f, 0.0f),
|
||||
glm::vec3(-5.0f, 0.0f, 0.0f),
|
||||
|
|
@ -326,7 +324,6 @@ public:
|
|||
glm::vec3(0.0f, 4.0f, 0.0f),
|
||||
glm::vec3(0.0f, -8.0f, 0.0f),
|
||||
};
|
||||
#endif
|
||||
|
||||
numParticles = static_cast<uint32_t>(attractors.size()) * PARTICLES_PER_ATTRACTOR;
|
||||
|
||||
|
|
@ -340,7 +337,7 @@ public:
|
|||
{
|
||||
for (uint32_t j = 0; j < PARTICLES_PER_ATTRACTOR; j++)
|
||||
{
|
||||
Particle &particle = particleBuffer[i * PARTICLES_PER_ATTRACTOR + j];
|
||||
Particle& particle = particleBuffer[i * PARTICLES_PER_ATTRACTOR + j];
|
||||
|
||||
// First particle in group as heavy center of gravity
|
||||
if (j == 0)
|
||||
|
|
@ -369,7 +366,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
compute.ubo.particleCount = numParticles;
|
||||
compute.uniformData.particleCount = numParticles;
|
||||
|
||||
VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle);
|
||||
|
||||
|
|
@ -378,25 +375,15 @@ public:
|
|||
|
||||
vks::Buffer stagingBuffer;
|
||||
|
||||
vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&stagingBuffer,
|
||||
storageBufferSize,
|
||||
particleBuffer.data());
|
||||
|
||||
vulkanDevice->createBuffer(
|
||||
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
|
||||
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
||||
&compute.storageBuffer,
|
||||
storageBufferSize);
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, particleBuffer.data());
|
||||
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &storageBuffer, storageBufferSize);
|
||||
|
||||
// Copy from staging buffer to storage buffer
|
||||
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
VkBufferCopy copyRegion = {};
|
||||
copyRegion.size = storageBufferSize;
|
||||
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffer.buffer, 1, ©Region);
|
||||
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, storageBuffer.buffer, 1, ©Region);
|
||||
// Execute a transfer barrier to the compute queue, if necessary
|
||||
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
||||
{
|
||||
|
|
@ -408,9 +395,9 @@ public:
|
|||
0,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.queueFamilyIndex,
|
||||
compute.storageBuffer.buffer,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
compute.storageBuffer.size
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
|
|
@ -425,61 +412,24 @@ public:
|
|||
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
||||
|
||||
stagingBuffer.destroy();
|
||||
|
||||
// Binding description
|
||||
vertices.bindingDescriptions.resize(1);
|
||||
vertices.bindingDescriptions[0] =
|
||||
vks::initializers::vertexInputBindingDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
sizeof(Particle),
|
||||
VK_VERTEX_INPUT_RATE_VERTEX);
|
||||
|
||||
// Attribute descriptions
|
||||
// Describes memory layout and shader positions
|
||||
vertices.attributeDescriptions.resize(2);
|
||||
// Location 0 : Position
|
||||
vertices.attributeDescriptions[0] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
0,
|
||||
VK_FORMAT_R32G32B32A32_SFLOAT,
|
||||
offsetof(Particle, pos));
|
||||
// Location 1 : Velocity (used for gradient lookup)
|
||||
vertices.attributeDescriptions[1] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
1,
|
||||
VK_FORMAT_R32G32B32A32_SFLOAT,
|
||||
offsetof(Particle, vel));
|
||||
|
||||
// Assign to vertex buffer
|
||||
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
||||
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
||||
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
||||
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
||||
}
|
||||
|
||||
void setupDescriptorPool()
|
||||
void prepareGraphics()
|
||||
{
|
||||
std::vector<VkDescriptorPoolSize> poolSizes =
|
||||
{
|
||||
// Vertex shader uniform buffer block
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(Graphics::UniformData));
|
||||
VK_CHECK_RESULT(graphics.uniformBuffer.map());
|
||||
|
||||
// Descriptor pool
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1),
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
|
||||
};
|
||||
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
||||
vks::initializers::descriptorPoolCreateInfo(
|
||||
static_cast<uint32_t>(poolSizes.size()),
|
||||
poolSizes.data(),
|
||||
2);
|
||||
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||
}
|
||||
|
||||
void setupDescriptorSetLayout()
|
||||
{
|
||||
// Descriptor layout
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
||||
setLayoutBindings = {
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
||||
|
|
@ -487,103 +437,58 @@ public:
|
|||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 2),
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
||||
vks::initializers::descriptorSetLayoutCreateInfo(
|
||||
setLayoutBindings.data(),
|
||||
static_cast<uint32_t>(setLayoutBindings.size()));
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
|
||||
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
|
||||
vks::initializers::pipelineLayoutCreateInfo(
|
||||
&graphics.descriptorSetLayout,
|
||||
1);
|
||||
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
|
||||
}
|
||||
|
||||
void setupDescriptorSet()
|
||||
{
|
||||
VkDescriptorSetAllocateInfo allocInfo =
|
||||
vks::initializers::descriptorSetAllocateInfo(
|
||||
descriptorPool,
|
||||
&graphics.descriptorSetLayout,
|
||||
1);
|
||||
|
||||
// Descriptor set
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
||||
writeDescriptorSets = {
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &textures.particle.descriptor),
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.gradient.descriptor),
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &graphics.uniformBuffer.descriptor),
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &textures.particle.descriptor),
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.gradient.descriptor),
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &graphics.uniformBuffer.descriptor),
|
||||
};
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
||||
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
||||
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
|
||||
0,
|
||||
VK_FALSE);
|
||||
// Pipeline layout
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
|
||||
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
||||
vks::initializers::pipelineRasterizationStateCreateInfo(
|
||||
VK_POLYGON_MODE_FILL,
|
||||
VK_CULL_MODE_NONE,
|
||||
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
||||
0);
|
||||
// Pipeline
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_ALWAYS);
|
||||
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
||||
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
||||
vks::initializers::pipelineColorBlendAttachmentState(
|
||||
0xf,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
||||
vks::initializers::pipelineColorBlendStateCreateInfo(
|
||||
1,
|
||||
&blendAttachmentState);
|
||||
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
||||
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
||||
VK_FALSE,
|
||||
VK_FALSE,
|
||||
VK_COMPARE_OP_ALWAYS);
|
||||
|
||||
VkPipelineViewportStateCreateInfo viewportState =
|
||||
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState =
|
||||
vks::initializers::pipelineMultisampleStateCreateInfo(
|
||||
VK_SAMPLE_COUNT_1_BIT,
|
||||
0);
|
||||
|
||||
std::vector<VkDynamicState> dynamicStateEnables = {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR
|
||||
// Vertex Input state
|
||||
std::vector<VkVertexInputBindingDescription> inputBindings = {
|
||||
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX)
|
||||
};
|
||||
VkPipelineDynamicStateCreateInfo dynamicState =
|
||||
vks::initializers::pipelineDynamicStateCreateInfo(
|
||||
dynamicStateEnables.data(),
|
||||
static_cast<uint32_t>(dynamicStateEnables.size()),
|
||||
0);
|
||||
|
||||
// Rendering pipeline
|
||||
// Load shaders
|
||||
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
||||
std::vector<VkVertexInputAttributeDescription> inputAttributes = {
|
||||
// Location 0 : Position
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)),
|
||||
// Location 1 : Velocity (used for color gradient lookup)
|
||||
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, vel)),
|
||||
};
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(inputBindings.size());
|
||||
vertexInputState.pVertexBindingDescriptions = inputBindings.data();
|
||||
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
|
||||
vertexInputState.pVertexAttributeDescriptions = inputAttributes.data();
|
||||
|
||||
// Shaders
|
||||
shaderStages[0] = loadShader(getShadersPath() + "computenbody/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getShadersPath() + "computenbody/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
||||
vks::initializers::pipelineCreateInfo(
|
||||
graphics.pipelineLayout,
|
||||
renderPass,
|
||||
0);
|
||||
|
||||
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass, 0);
|
||||
pipelineCreateInfo.pVertexInputState = &vertexInputState;
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
|
|
@ -606,26 +511,19 @@ public:
|
|||
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
|
||||
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
|
||||
}
|
||||
|
||||
void prepareGraphics()
|
||||
{
|
||||
prepareStorageBuffers();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptorSetLayout();
|
||||
preparePipelines();
|
||||
setupDescriptorSet();
|
||||
|
||||
// Semaphore for compute & graphics sync
|
||||
// We use a semaphore to synchronize compute and graphics
|
||||
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
|
||||
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &graphics.semaphore));
|
||||
|
||||
// Signal the semaphore
|
||||
// Signal the semaphore for the first run
|
||||
VkSubmitInfo submitInfo = vks::initializers::submitInfo();
|
||||
submitInfo.signalSemaphoreCount = 1;
|
||||
submitInfo.pSignalSemaphores = &graphics.semaphore;
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
|
||||
|
||||
buildCommandBuffers();
|
||||
}
|
||||
|
||||
void prepareCompute()
|
||||
|
|
@ -636,90 +534,47 @@ public:
|
|||
// requiring proper synchronization (see the memory barriers in buildComputeCommandBuffer)
|
||||
vkGetDeviceQueue(device, compute.queueFamilyIndex, 0, &compute.queue);
|
||||
|
||||
// Compute shader uniform buffer block
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformData));
|
||||
VK_CHECK_RESULT(compute.uniformBuffer.map());
|
||||
|
||||
// Create compute pipeline
|
||||
// Compute pipelines are created separate from graphics pipelines even if they use the same queue (family index)
|
||||
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0 : Particle position storage buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
||||
VK_SHADER_STAGE_COMPUTE_BIT,
|
||||
0),
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0),
|
||||
// Binding 1 : Uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
VK_SHADER_STAGE_COMPUTE_BIT,
|
||||
1),
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
||||
vks::initializers::descriptorSetLayoutCreateInfo(
|
||||
setLayoutBindings.data(),
|
||||
static_cast<uint32_t>(setLayoutBindings.size()));
|
||||
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
||||
|
||||
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
||||
vks::initializers::pipelineLayoutCreateInfo(
|
||||
&compute.descriptorSetLayout,
|
||||
1);
|
||||
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
||||
|
||||
VkDescriptorSetAllocateInfo allocInfo =
|
||||
vks::initializers::descriptorSetAllocateInfo(
|
||||
descriptorPool,
|
||||
&compute.descriptorSetLayout,
|
||||
1);
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
||||
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
|
||||
|
||||
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
|
||||
{
|
||||
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
|
||||
// Binding 0 : Particle position storage buffer
|
||||
vks::initializers::writeDescriptorSet(
|
||||
compute.descriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
||||
0,
|
||||
&compute.storageBuffer.descriptor),
|
||||
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffer.descriptor),
|
||||
// Binding 1 : Uniform buffer
|
||||
vks::initializers::writeDescriptorSet(
|
||||
compute.descriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
1,
|
||||
&compute.uniformBuffer.descriptor)
|
||||
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,1,&compute.uniformBuffer.descriptor)
|
||||
};
|
||||
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, nullptr);
|
||||
|
||||
// Create pipelines
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
||||
|
||||
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
|
||||
|
||||
// 1st pass
|
||||
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computenbody/particle_calculate.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
||||
|
||||
// Set shader parameters via specialization constants
|
||||
struct SpecializationData {
|
||||
uint32_t sharedDataSize;
|
||||
float gravity;
|
||||
float power;
|
||||
float soften;
|
||||
} specializationData;
|
||||
|
||||
std::vector<VkSpecializationMapEntry> specializationMapEntries;
|
||||
specializationMapEntries.push_back(vks::initializers::specializationMapEntry(0, offsetof(SpecializationData, sharedDataSize), sizeof(uint32_t)));
|
||||
specializationMapEntries.push_back(vks::initializers::specializationMapEntry(1, offsetof(SpecializationData, gravity), sizeof(float)));
|
||||
specializationMapEntries.push_back(vks::initializers::specializationMapEntry(2, offsetof(SpecializationData, power), sizeof(float)));
|
||||
specializationMapEntries.push_back(vks::initializers::specializationMapEntry(3, offsetof(SpecializationData, soften), sizeof(float)));
|
||||
|
||||
specializationData.sharedDataSize = std::min((uint32_t)1024, (uint32_t)(vulkanDevice->properties.limits.maxComputeSharedMemorySize / sizeof(glm::vec4)));
|
||||
|
||||
specializationData.gravity = 0.002f;
|
||||
specializationData.power = 0.75f;
|
||||
specializationData.soften = 0.05f;
|
||||
|
||||
VkSpecializationInfo specializationInfo =
|
||||
vks::initializers::specializationInfo(static_cast<uint32_t>(specializationMapEntries.size()), specializationMapEntries.data(), sizeof(specializationData), &specializationData);
|
||||
// We want to use as much shared memory for the compute shader invocations as available, so we calculate it based on the device limits and pass it to the shader via specialization constants
|
||||
uint32_t sharedDataSize = std::min((uint32_t)1024, (uint32_t)(vulkanDevice->properties.limits.maxComputeSharedMemorySize / sizeof(glm::vec4)));
|
||||
VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
|
||||
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(int32_t), &sharedDataSize);
|
||||
computePipelineCreateInfo.stage.pSpecializationInfo = &specializationInfo;
|
||||
|
||||
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipelineCalculate));
|
||||
|
|
@ -744,101 +599,34 @@ public:
|
|||
|
||||
// Build a single command buffer containing the compute dispatch commands
|
||||
buildComputeCommandBuffer();
|
||||
|
||||
// SRS - By reordering compute and graphics within draw(), the following code is no longer needed:
|
||||
// If graphics and compute queue family indices differ, acquire and immediately release the storage buffer, so that the initial acquire from the graphics command buffers are matched up properly
|
||||
/*
|
||||
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
||||
{
|
||||
// Create a transient command buffer for setting up the initial buffer transfer state
|
||||
VkCommandBuffer transferCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, compute.commandPool, true);
|
||||
|
||||
VkBufferMemoryBarrier acquire_buffer_barrier =
|
||||
{
|
||||
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
||||
nullptr,
|
||||
0,
|
||||
VK_ACCESS_SHADER_WRITE_BIT,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.queueFamilyIndex,
|
||||
compute.storageBuffer.buffer,
|
||||
0,
|
||||
compute.storageBuffer.size
|
||||
};
|
||||
vkCmdPipelineBarrier(
|
||||
transferCmd,
|
||||
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
||||
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
||||
0,
|
||||
0, nullptr,
|
||||
1, &acquire_buffer_barrier,
|
||||
0, nullptr);
|
||||
|
||||
VkBufferMemoryBarrier release_buffer_barrier =
|
||||
{
|
||||
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
||||
nullptr,
|
||||
VK_ACCESS_SHADER_WRITE_BIT,
|
||||
0,
|
||||
compute.queueFamilyIndex,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.storageBuffer.buffer,
|
||||
0,
|
||||
compute.storageBuffer.size
|
||||
};
|
||||
vkCmdPipelineBarrier(
|
||||
transferCmd,
|
||||
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
||||
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
||||
0,
|
||||
0, nullptr,
|
||||
1, &release_buffer_barrier,
|
||||
0, nullptr);
|
||||
|
||||
vulkanDevice->flushCommandBuffer(transferCmd, compute.queue, compute.commandPool);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
// Prepare and initialize uniform buffer containing shader uniforms
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
// Compute shader uniform buffer block
|
||||
vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&compute.uniformBuffer,
|
||||
sizeof(compute.ubo));
|
||||
|
||||
// Map for host access
|
||||
VK_CHECK_RESULT(compute.uniformBuffer.map());
|
||||
|
||||
// Vertex shader uniform buffer block
|
||||
vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&graphics.uniformBuffer,
|
||||
sizeof(graphics.ubo));
|
||||
|
||||
// Map for host access
|
||||
VK_CHECK_RESULT(graphics.uniformBuffer.map());
|
||||
|
||||
updateComputeUniformBuffers();
|
||||
updateGraphicsUniformBuffers();
|
||||
}
|
||||
|
||||
void updateComputeUniformBuffers()
|
||||
{
|
||||
compute.ubo.deltaT = paused ? 0.0f : frameTimer * 0.05f;
|
||||
memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo));
|
||||
compute.uniformData.deltaT = paused ? 0.0f : frameTimer * 0.05f;
|
||||
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformData));
|
||||
}
|
||||
|
||||
void updateGraphicsUniformBuffers()
|
||||
{
|
||||
graphics.ubo.projection = camera.matrices.perspective;
|
||||
graphics.ubo.view = camera.matrices.view;
|
||||
graphics.ubo.screenDim = glm::vec2((float)width, (float)height);
|
||||
memcpy(graphics.uniformBuffer.mapped, &graphics.ubo, sizeof(graphics.ubo));
|
||||
graphics.uniformData.projection = camera.matrices.perspective;
|
||||
graphics.uniformData.view = camera.matrices.view;
|
||||
graphics.uniformData.screenDim = glm::vec2((float)width, (float)height);
|
||||
memcpy(graphics.uniformBuffer.mapped, &graphics.uniformData, sizeof(Graphics::UniformData));
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
// We will be using the queue family indices to check if graphics and compute queue families differ
|
||||
// If that's the case, we need additional barriers for acquiring and releasing resources
|
||||
graphics.queueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
||||
compute.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
||||
loadAssets();
|
||||
prepareStorageBuffers();
|
||||
prepareGraphics();
|
||||
prepareCompute();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
void draw()
|
||||
|
|
@ -876,35 +664,13 @@ public:
|
|||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
// We will be using the queue family indices to check if graphics and compute queue families differ
|
||||
// If that's the case, we need additional barriers for acquiring and releasing resources
|
||||
graphics.queueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
||||
compute.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
||||
loadAssets();
|
||||
setupDescriptorPool();
|
||||
prepareGraphics();
|
||||
prepareCompute();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
draw();
|
||||
updateComputeUniformBuffers();
|
||||
if (camera.updated) {
|
||||
updateGraphicsUniformBuffers();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void viewChanged()
|
||||
{
|
||||
updateGraphicsUniformBuffers();
|
||||
draw();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue