diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index f68d863f..e39d82d9 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -114,6 +114,7 @@ set(EXAMPLES gltfskinning graphicspipelinelibrary hdr + hostimagecopy imgui indirectdraw inlineuniformblocks diff --git a/examples/hostimagecopy/hostimagecopy.cpp b/examples/hostimagecopy/hostimagecopy.cpp new file mode 100644 index 00000000..abc49223 --- /dev/null +++ b/examples/hostimagecopy/hostimagecopy.cpp @@ -0,0 +1,523 @@ +/* +* Vulkan Example - Host image copy using VK_EXT_host_image_copy +* +* This sample shows how to use host image copies to directly upload an image to the devic without having to use staging +* +* Work-in-progress +* +* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de +* +* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) +*/ + +#include "vulkanexamplebase.h" +#include +#include + +class VulkanExample : public VulkanExampleBase +{ +public: + // Pointers for functions added by the host image copy extension; + PFN_vkCopyMemoryToImageEXT vkCopyMemoryToImageEXT{ nullptr }; + PFN_vkTransitionImageLayoutEXT vkTransitionImageLayoutEXT{ nullptr }; + + VkPhysicalDeviceHostImageCopyFeaturesEXT enabledPhysicalDeviceHostImageCopyFeaturesEXT{}; + + // Vertex layout for this example + struct Vertex { + float pos[3]; + float uv[2]; + float normal[3]; + }; + + // Contains all Vulkan objects that are required to store and use a texture + // Note that this repository contains a texture class (VulkanTexture.hpp) that encapsulates texture loading functionality in a class that is used in subsequent demos + struct Texture { + VkSampler sampler{ VK_NULL_HANDLE }; + VkImage image{ VK_NULL_HANDLE }; + VkDeviceMemory deviceMemory{ VK_NULL_HANDLE }; + VkImageView view{ VK_NULL_HANDLE }; + uint32_t width{ 0 }; + uint32_t height{ 0 }; + uint32_t mipLevels{ 0 }; + } texture; + + vks::Buffer vertexBuffer; + vks::Buffer indexBuffer; + uint32_t indexCount{ 0 }; + + struct UniformData { + glm::mat4 projection; + glm::mat4 modelView; + glm::vec4 viewPos; + // This is used to change the bias for the level-of-detail (mips) in the fragment shader + float lodBias = 0.0f; + } uniformData; + vks::Buffer uniformBuffer; + + VkPipeline pipeline{ VK_NULL_HANDLE }; + VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; + VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; + VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; + + VulkanExample() : VulkanExampleBase() + { + title = "Host image copy"; + camera.type = Camera::CameraType::lookat; + camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f)); + camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f)); + camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); + + // Enable required extensions + enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); + enabledDeviceExtensions.push_back(VK_KHR_FORMAT_FEATURE_FLAGS_2_EXTENSION_NAME); + enabledDeviceExtensions.push_back(VK_KHR_COPY_COMMANDS_2_EXTENSION_NAME); + enabledDeviceExtensions.push_back(VK_EXT_HOST_IMAGE_COPY_EXTENSION_NAME); + + // Enable host image copy feature + enabledPhysicalDeviceHostImageCopyFeaturesEXT.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_FEATURES_EXT; + enabledPhysicalDeviceHostImageCopyFeaturesEXT.hostImageCopy = VK_TRUE; + deviceCreatepNextChain = &enabledPhysicalDeviceHostImageCopyFeaturesEXT; + } + + ~VulkanExample() + { + if (device) { + destroyTextureImage(texture); + vkDestroyPipeline(device, pipeline, nullptr); + vkDestroyPipelineLayout(device, pipelineLayout, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); + vertexBuffer.destroy(); + indexBuffer.destroy(); + uniformBuffer.destroy(); + } + } + + // Enable physical device features required for this example + virtual void getEnabledFeatures() + { + // Enable anisotropic filtering if supported + if (deviceFeatures.samplerAnisotropy) { + enabledFeatures.samplerAnisotropy = VK_TRUE; + }; + } + + /* + Upload texture image data to the GPU + + Vulkan offers two types of image tiling (memory layout): + + Linear tiled images: + These are stored as is and can be copied directly to. But due to the linear nature they're not a good match for GPUs and format and feature support is very limited. + It's not advised to use linear tiled images for anything else than copying from host to GPU if buffer copies are not an option. + Linear tiling is thus only implemented for learning purposes, one should always prefer optimal tiled image. + + Optimal tiled images: + These are stored in an implementation specific layout matching the capability of the hardware. They usually support more formats and features and are much faster. + Optimal tiled images are stored on the device and not accessible by the host. So they can't be written directly to (like liner tiled images) and always require + some sort of data copy, either from a buffer or a linear tiled image. + + In Short: Always use optimal tiled images for rendering. + */ + void loadTexture() + { + // We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/) + std::string filename = getAssetPath() + "textures/metalplate01_rgba.ktx"; + // Texture data contains 4 channels (RGBA) with unnormalized 8-bit values, this is the most commonly supported format + VkFormat format = VK_FORMAT_R8G8B8A8_UNORM; + + ktxResult result; + ktxTexture* ktxTexture; + +#if defined(__ANDROID__) + // Textures are stored inside the apk on Android (compressed) + // So they need to be loaded via the asset manager + AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING); + if (!asset) { + vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1); + } + size_t size = AAsset_getLength(asset); + assert(size > 0); + + ktx_uint8_t *textureData = new ktx_uint8_t[size]; + AAsset_read(asset, textureData, size); + AAsset_close(asset); + result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture); + delete[] textureData; +#else + if (!vks::tools::fileExists(filename)) { + vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1); + } + result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture); +#endif + assert(result == KTX_SUCCESS); + + // Get properties required for using and upload texture data from the ktx texture object + texture.width = ktxTexture->baseWidth; + texture.height = ktxTexture->baseHeight; + texture.mipLevels = ktxTexture->numLevels; + ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture); + ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture); + + // Copy data to an optimal tiled image using a direct + + // Create optimal tiled target image on the device + VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); + imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; + imageCreateInfo.format = format; + imageCreateInfo.mipLevels = texture.mipLevels; + imageCreateInfo.arrayLayers = 1; + imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; + imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; + // Set initial layout of the image to undefined + imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + imageCreateInfo.extent = { texture.width, texture.height, 1 }; + // @todo: commtn + imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT; + VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image)); + + VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo(); + VkMemoryRequirements memReqs = {}; + vkGetImageMemoryRequirements(device, texture.image, &memReqs); + memAllocInfo.allocationSize = memReqs.size; + memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory)); + VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0)); + + // @todo: comment + std::vector memoryToImageCopies{}; + for (uint32_t i = 0; i < texture.mipLevels; i++) { + ktx_size_t offset; + KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset); + assert(ret == KTX_SUCCESS); + // Setup a buffer image copy structure for the current mip level + VkMemoryToImageCopyEXT memoryToImageCopy = {}; + memoryToImageCopy.sType = VK_STRUCTURE_TYPE_MEMORY_TO_IMAGE_COPY_EXT; + memoryToImageCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + memoryToImageCopy.imageSubresource.mipLevel = i; + memoryToImageCopy.imageSubresource.baseArrayLayer = 0; + memoryToImageCopy.imageSubresource.layerCount = 1; + memoryToImageCopy.imageExtent.width = ktxTexture->baseWidth >> i; + memoryToImageCopy.imageExtent.height = ktxTexture->baseHeight >> i; + memoryToImageCopy.imageExtent.depth = 1; + memoryToImageCopy.pHostPointer = ktxTextureData + offset; + + memoryToImageCopies.push_back(memoryToImageCopy); + } + + VkImageSubresourceRange subresourceRange{}; + subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + subresourceRange.baseMipLevel = 0; + subresourceRange.levelCount = texture.mipLevels; + subresourceRange.layerCount = 1; + + VkHostImageLayoutTransitionInfoEXT hostImageLayoutTransitionInfo{}; + hostImageLayoutTransitionInfo.sType = VK_STRUCTURE_TYPE_HOST_IMAGE_LAYOUT_TRANSITION_INFO_EXT; + hostImageLayoutTransitionInfo.image = texture.image; + hostImageLayoutTransitionInfo.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; + hostImageLayoutTransitionInfo.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + hostImageLayoutTransitionInfo.subresourceRange = subresourceRange; + + vkTransitionImageLayoutEXT(device, 1, &hostImageLayoutTransitionInfo); + + VkCopyMemoryToImageInfoEXT copyMemoryInfo{}; + copyMemoryInfo.sType = VK_STRUCTURE_TYPE_COPY_MEMORY_TO_IMAGE_INFO_EXT; + copyMemoryInfo.dstImage = texture.image; + copyMemoryInfo.dstImageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + copyMemoryInfo.regionCount = static_cast(memoryToImageCopies.size()); + copyMemoryInfo.pRegions = memoryToImageCopies.data(); + + vkCopyMemoryToImageEXT(device, ©MemoryInfo); + + ktxTexture_Destroy(ktxTexture); + + // Create a texture sampler + VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); + sampler.magFilter = VK_FILTER_LINEAR; + sampler.minFilter = VK_FILTER_LINEAR; + sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; + sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; + sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; + sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; + sampler.mipLodBias = 0.0f; + sampler.compareOp = VK_COMPARE_OP_NEVER; + sampler.minLod = 0.0f; + sampler.maxLod = (float)texture.mipLevels; + if (vulkanDevice->features.samplerAnisotropy) { + sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy; + sampler.anisotropyEnable = VK_TRUE; + } else { + sampler.maxAnisotropy = 1.0; + sampler.anisotropyEnable = VK_FALSE; + } + sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; + VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler)); + + // Create image view + VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo(); + view.viewType = VK_IMAGE_VIEW_TYPE_2D; + view.format = format; + view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + view.subresourceRange.baseMipLevel = 0; + view.subresourceRange.baseArrayLayer = 0; + view.subresourceRange.layerCount = 1; + view.subresourceRange.levelCount = texture.mipLevels; + view.image = texture.image; + VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); + } + + // Free all Vulkan resources used by a texture object + void destroyTextureImage(Texture texture) + { + vkDestroyImageView(device, texture.view, nullptr); + vkDestroyImage(device, texture.image, nullptr); + vkDestroySampler(device, texture.sampler, nullptr); + vkFreeMemory(device, texture.deviceMemory, nullptr); + } + + void buildCommandBuffers() + { + VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); + + VkClearValue clearValues[2]; + clearValues[0].color = defaultClearColor; + clearValues[1].depthStencil = { 1.0f, 0 }; + + VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); + renderPassBeginInfo.renderPass = renderPass; + renderPassBeginInfo.renderArea.offset.x = 0; + renderPassBeginInfo.renderArea.offset.y = 0; + renderPassBeginInfo.renderArea.extent.width = width; + renderPassBeginInfo.renderArea.extent.height = height; + renderPassBeginInfo.clearValueCount = 2; + renderPassBeginInfo.pClearValues = clearValues; + + for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) + { + // Set target frame buffer + renderPassBeginInfo.framebuffer = frameBuffers[i]; + + VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); + + vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); + + VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); + vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); + + VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); + vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); + + vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); + vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); + + VkDeviceSize offsets[1] = { 0 }; + vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets); + vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); + + vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0); + + drawUI(drawCmdBuffers[i]); + + vkCmdEndRenderPass(drawCmdBuffers[i]); + + VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); + } + } + + // Creates a vertex and index buffer for a quad made of two triangles + // This is used to display the texture on + void generateQuad() + { + // Setup vertices for a single uv-mapped quad made from two triangles + std::vector vertices = + { + { { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } }, + { { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } }, + { { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }, + { { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } } + }; + + // Setup indices + std::vector indices = { 0,1,2, 2,3,0 }; + indexCount = static_cast(indices.size()); + + // Create buffers and upload data to the GPU + struct StagingBuffers { + vks::Buffer vertices; + vks::Buffer indices; + } stagingBuffers; + + // Host visible source buffers (staging) + VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data())); + VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data())); + + // Device local destination buffers + VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex))); + VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t))); + + // Copy from host do device + vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue); + vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue); + + // Clean up + stagingBuffers.vertices.destroy(); + stagingBuffers.indices.destroy(); + } + + void setupDescriptors() + { + // Pool + std::vector poolSizes = { + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), + // The sample uses a combined image + sampler descriptor to sample the texture in the fragment shader + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) + }; + VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); + VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); + + // Layout + std::vector setLayoutBindings = { + // Binding 0 : Vertex shader uniform buffer + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), + // Binding 1 : Fragment shader image sampler + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) + }; + VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); + + // Set + VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); + + // Setup a descriptor image info for the current texture to be used as a combined image sampler + VkDescriptorImageInfo textureDescriptor; + textureDescriptor.imageView = texture.view; + textureDescriptor.sampler = texture.sampler; + textureDescriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + + std::vector writeDescriptorSets = { + // Binding 0 : Vertex shader uniform buffer + vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor), + // Binding 1 : Fragment shader texture sampler + // Fragment shader: layout (binding = 1) uniform sampler2D samplerColor; + vks::initializers::writeDescriptorSet(descriptorSet, + VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // The descriptor set will use a combined image sampler (as opposed to splitting image and sampler) + 1, // Shader binding point 1 + &textureDescriptor) // Pointer to the descriptor image for our texture + }; + vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); + } + + void preparePipelines() + { + // Layout + VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); + VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); + + // Pipeline + VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); + VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); + VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); + VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); + VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); + VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); + VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); + std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; + VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); + std::array shaderStages; + + // Shaders + shaderStages[0] = loadShader(getShadersPath() + "texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); + shaderStages[1] = loadShader(getShadersPath() + "texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); + + // Vertex input state + std::vector vertexInputBindings = { + vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX) + }; + std::vector vertexInputAttributes = { + vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), + vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)), + vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)), + }; + VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); + vertexInputState.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); + vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data(); + vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); + vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); + + VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); + pipelineCreateInfo.pVertexInputState = &vertexInputState; + pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; + pipelineCreateInfo.pRasterizationState = &rasterizationState; + pipelineCreateInfo.pColorBlendState = &colorBlendState; + pipelineCreateInfo.pMultisampleState = &multisampleState; + pipelineCreateInfo.pViewportState = &viewportState; + pipelineCreateInfo.pDepthStencilState = &depthStencilState; + pipelineCreateInfo.pDynamicState = &dynamicState; + pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); + pipelineCreateInfo.pStages = shaderStages.data(); + VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline)); + } + + // Prepare and initialize uniform buffer containing shader uniforms + void prepareUniformBuffers() + { + // Vertex shader uniform buffer block + VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData)); + VK_CHECK_RESULT(uniformBuffer.map()); + } + + void updateUniformBuffers() + { + uniformData.projection = camera.matrices.perspective; + uniformData.modelView = camera.matrices.view; + uniformData.viewPos = camera.viewPos; + memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData)); + } + + void prepare() + { + VulkanExampleBase::prepare(); + + // Get the function pointers required host image copies + vkCopyMemoryToImageEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCopyMemoryToImageEXT")); + vkTransitionImageLayoutEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkTransitionImageLayoutEXT")); + + loadTexture(); + generateQuad(); + prepareUniformBuffers(); + setupDescriptors(); + preparePipelines(); + buildCommandBuffers(); + prepared = true; + } + + void draw() + { + VulkanExampleBase::prepareFrame(); + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; + VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); + VulkanExampleBase::submitFrame(); + } + + virtual void render() + { + if (!prepared) + return; + updateUniformBuffers(); + draw(); + } + + virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) + { + if (overlay->header("Settings")) { + if (overlay->sliderFloat("LOD bias", &uniformData.lodBias, 0.0f, (float)texture.mipLevels)) { + updateUniformBuffers(); + } + } + } +}; + +VULKAN_EXAMPLE_MAIN()