From 149ff8f94e40c2358f211976abd78f9ce6ed84fe Mon Sep 17 00:00:00 2001 From: Sascha Willems Date: Fri, 15 May 2020 07:13:51 +0200 Subject: [PATCH] Split sample into header and source files due to complexity --- data/shaders/gltfskinning/mesh.frag | 2 +- data/shaders/gltfskinning/mesh.frag.spv | Bin 2024 -> 2024 bytes data/shaders/gltfskinning/mesh.vert | 5 +- data/shaders/gltfskinning/mesh.vert.spv | Bin 5156 -> 5312 bytes examples/gltfskinning/gltfskinning.cpp | 1941 ++++++++++------------- examples/gltfskinning/gltfskinning.h | 251 +++ 6 files changed, 1122 insertions(+), 1077 deletions(-) create mode 100644 examples/gltfskinning/gltfskinning.h diff --git a/data/shaders/gltfskinning/mesh.frag b/data/shaders/gltfskinning/mesh.frag index 6d5f4edc..50b8226f 100644 --- a/data/shaders/gltfskinning/mesh.frag +++ b/data/shaders/gltfskinning/mesh.frag @@ -1,6 +1,6 @@ #version 450 -layout (set = 1, binding = 0) uniform sampler2D samplerColorMap; +layout (set = 2, binding = 0) uniform sampler2D samplerColorMap; layout (location = 0) in vec3 inNormal; layout (location = 1) in vec3 inColor; diff --git a/data/shaders/gltfskinning/mesh.frag.spv b/data/shaders/gltfskinning/mesh.frag.spv index 3dea62b05ef4dc08b008d218c076e2de5c25c37c..3a3e2dfe7c3e8ed468f2ef1dc59fd89f154b7a97 100644 GIT binary patch delta 14 VcmaFC|AK$R1V%=t%@Y~J*#Ikx1l0fl delta 14 VcmaFC|AK$R1V%>2%@Y~J*#Ikr1k?Zk diff --git a/data/shaders/gltfskinning/mesh.vert b/data/shaders/gltfskinning/mesh.vert index 8b3fc9d5..ecb24348 100644 --- a/data/shaders/gltfskinning/mesh.vert +++ b/data/shaders/gltfskinning/mesh.vert @@ -18,7 +18,7 @@ layout(push_constant) uniform PushConsts { mat4 model; } primitive; -layout(std430, set = 2, binding = 0) readonly buffer JointMatrices { +layout(std430, set = 1, binding = 0) readonly buffer JointMatrices { mat4 jointMatrices[]; }; @@ -43,8 +43,9 @@ void main() gl_Position = uboScene.projection * uboScene.view * primitive.model * skinMat * vec4(inPos.xyz, 1.0); + outNormal = normalize(transpose(inverse(mat3(uboScene.view * primitive.model * skinMat))) * inNormal); + vec4 pos = uboScene.view * vec4(inPos, 1.0); - outNormal = mat3(uboScene.view) * inNormal; vec3 lPos = mat3(uboScene.view) * uboScene.lightPos.xyz; outLightVec = lPos - pos.xyz; outViewVec = -pos.xyz; diff --git a/data/shaders/gltfskinning/mesh.vert.spv b/data/shaders/gltfskinning/mesh.vert.spv index 9a35e3318622e3bdfe89f1e873cece2c14e81ad3..de0e0016db9253e8cb68ee6317d638ad14d1f49f 100644 GIT binary patch delta 1154 zcmZ9LOKTKC6osp2(wT1Jph=^npdyBVlDKdcMHE~}5Ck(Ix^g9=f-r)SfSVz!;Br#F zVxlG*-;ZR{J`*34Xh;1S{sM97Lhw7?T@b9{%suziy|-@NnwiUAn$D`*1)d?#_k?j#z$@g+qWu{}X-VbmBPYNn z)(`vFD_fnaqIPDnb8$87FZDE_!{9R5&sGIH2BaUPr-&WZU>4v#soC_X)pzJH}!ZAbbyBO>#1-bM?u<9 zF$K*46*~m9e}LBuvC=ilUhE?<3|5c(ajv_=p5TuH4Xqvf6iCymntCQa!;z>1UEuRv z%WhsuC;kFW1r)FSD}Y<1doSTSTrp}^KM`rJ*(Ut|X6O45wV^}xq%oKWTJAYs!KKG~ zu<$iZ5uV)@b=y`~P=A{%YSiVtgG(2*bg}Fr*%Q9USKT*2v1)P=`vIuQ1)vG4r;k9o ztNkh0q_gZm)Oq+bL^ZXi%j@4O&Aq}BT$-!74A+2M%`b3i%XT`d?EMN;hE!E+VWqk3 d75M7xZ}`$y?C+?u`8!OCG83%)zf52c_yHFiw;C0P`a&p#GWSNS+9-Vq zA#|1}&J+*af?a7`4W-Z%=HZveaJWj`W;L#jpSX14;`r(F=TfbcRHEO7V*5`tS=egA zF3NCki95?-gW`U2g)@XiyFX8>b zH67;_Fjw6*E18zB`5J%ons3n5^EDUXYFgj(3E6GSal>Caz$3Np){Rz0JUx-?MFkj(n zdG#vX_cTA^Z*aBMWOSf5@*QS{s@?p2)bi>zcz5*=e6_XY=0I)dI!wjN4p#p!XLAVr E1AeuLb^rhX diff --git a/examples/gltfskinning/gltfskinning.cpp b/examples/gltfskinning/gltfskinning.cpp index cc45f47d..8839beb4 100644 --- a/examples/gltfskinning/gltfskinning.cpp +++ b/examples/gltfskinning/gltfskinning.cpp @@ -13,1153 +13,946 @@ * For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0 * * Other samples will load models using a dedicated model loader with more features (see base/VulkanglTFModel.hpp) - * + * * If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/ */ // @todo: add link to https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_020_Skins.md -#include -#include -#include -#include -#include +#include "gltfskinning.h" -#define GLM_FORCE_RADIANS -#define GLM_FORCE_DEPTH_ZERO_TO_ONE -#include -#include -#include +/* -#define TINYGLTF_IMPLEMENTATION -#define STB_IMAGE_IMPLEMENTATION -#define TINYGLTF_NO_STB_IMAGE_WRITE -#ifdef VK_USE_PLATFORM_ANDROID_KHR -#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS -#endif -#include "tiny_gltf.h" + glTF model class -#include -#include "vulkanexamplebase.h" -#include "VulkanTexture.hpp" + Contains everything required to render a skinned glTF model in Vulkan + This class is simplified compared to glTF's feature set but retains the basic glTF structure required for this sample -#define ENABLE_VALIDATION false +*/ -// Contains everything required to render a glTF model in Vulkan -// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure -class VulkanglTFModel + +/* + Get a node's local matrix from the current translation, rotation and scale values + These are calculated from the current animation an need to be calculated dynamically +*/ +glm::mat4 VulkanglTFModel::Node::getLocalMatrix() { + return glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) * matrix; +} + +/* + Release all Vulkan resources acquired for the model +*/ +VulkanglTFModel::~VulkanglTFModel() { -public: - // The class requires some Vulkan objects so it can create it's own resources - vks::VulkanDevice* vulkanDevice; - VkQueue copyQueue; - - // The vertex layout for the samples' model - struct Vertex { - glm::vec3 pos; - glm::vec3 normal; - glm::vec2 uv; - glm::vec3 color; - // Contains indices of the joints that effect this vertex - glm::vec4 jointIndices; - // Contains the weights that define how strongly this vertex is affected by above joints - glm::vec4 jointWeights; - }; - - // Single vertex buffer for all primitives - struct { - VkBuffer buffer; - VkDeviceMemory memory; - } vertices; - - // Single index buffer for all primitives - struct { - int count; - VkBuffer buffer; - VkDeviceMemory memory; - } indices; - - // The following structures roughly represent the glTF scene structure - // To keep things simple, they only contain those properties that are required for this sample - struct Node; - - // A primitive contains the data for a single draw call - struct Primitive { - uint32_t firstIndex; - uint32_t indexCount; - int32_t materialIndex; - }; - - // Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives - struct Mesh { - std::vector primitives; - - // POI: @todo: document - struct ShaderData { - vks::Buffer buffer; - struct Values { - // @todo: make const - glm::mat4 jointMatrix[16]{}; - float jointcount{ 0 }; - } values; - } shaderData; - VkDescriptorSet descriptorSet; - }; - - // A skin contains the joints and matrices applied during vertex skinning - struct Skin { - std::string name; - Node* skeletonRoot = nullptr; - std::vector inverseBindMatrices; - std::vector joints; - // POI: Store joint matrices in an SSBO - // @todo: proper comment - std::vector jointMatrices; - vks::Buffer ssbo; - VkDescriptorSet descriptorSet; - }; - - // A node represents an object in the glTF scene graph - struct Node { - Node* parent; - uint32_t index; - std::vector children; - Mesh mesh; - // Store matrix components as they may be altered by animations - glm::vec3 translation{}; - glm::vec3 scale{ 1.0f }; - glm::quat rotation{}; - // glTF stores the index of the skin for a node - int32_t skin = -1; - glm::mat4 matrix; - // Get the current local matrix based on translation, rotation and scale, which can all be altered by animation - glm::mat4 getLocalMatrix() { - return glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) * matrix; - } - - }; - - // A glTF material stores information in e.g. the exture that is attached to it and colors - struct Material { - glm::vec4 baseColorFactor = glm::vec4(1.0f); - uint32_t baseColorTextureIndex; - }; - - // Contains the texture for a single glTF image - // Images may be reused by texture objects and are as such separted - struct Image { - vks::Texture2D texture; - // We also store (and create) a descriptor set that's used to access this texture from the fragment shader - VkDescriptorSet descriptorSet; - }; - - // A glTF texture stores a reference to the image and a sampler - // In this sample, we are only interested in the image - struct Texture { - int32_t imageIndex; - }; - - /* - glTF animation channel - // @todo: Comment - */ - struct AnimationChannel { - std::string path; - Node* node; - uint32_t samplerIndex; - }; - - /* - glTF animation sampler - // @todo: Comment - */ - struct AnimationSampler { - std::string interpolation; - std::vector inputs; - std::vector outputsVec4; - }; - - /* - glTF animation - // @todo: Comment - */ - struct Animation { - std::string name; - std::vector samplers; - std::vector channels; - float start = std::numeric_limits::max(); - float end = std::numeric_limits::min(); - }; - - /* - Model data - */ - std::vector images; - std::vector textures; - std::vector materials; - std::vector nodes; - std::vector skins; - std::vector animations; - - // POI: @todo: document - struct MeshData { - // @todo: make const - glm::mat4 jointMatrix[16]{}; - float jointcount{ 0 }; - }; - struct ShaderData { - vks::Buffer buffer; - } shaderData; - VkDescriptorSet descriptorSet; - std::vector meshdata; - - ~VulkanglTFModel() - { - // Release all Vulkan resources allocated for the model - vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr); - vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr); - vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr); - vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr); - for (Image image : images) { - vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr); - vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr); - vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); - vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); - } + vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr); + vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr); + vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr); + vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr); + for (Image image : images) { + vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr); + vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr); + vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); + vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); } +} - /* - glTF loading functions +/* + glTF loading functions - The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure - */ + The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure +*/ - void loadImages(tinygltf::Model& input) - { - // Images can be stored inside the glTF (which is the case for the sample model), so instead of directly - // loading them from disk, we fetch them from the glTF loader and upload the buffers - images.resize(input.images.size()); - for (size_t i = 0; i < input.images.size(); i++) { - tinygltf::Image& glTFImage = input.images[i]; - // Get the image data from the glTF loader - unsigned char* buffer = nullptr; - VkDeviceSize bufferSize = 0; - bool deleteBuffer = false; - // We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan - if (glTFImage.component == 3) { - bufferSize = glTFImage.width * glTFImage.height * 4; - buffer = new unsigned char[bufferSize]; - unsigned char* rgba = buffer; - unsigned char* rgb = &glTFImage.image[0]; - for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) { - for (int32_t j = 0; j < 3; ++j) { - rgba[j] = rgb[j]; - } - rgba += 4; - rgb += 3; - } - deleteBuffer = true; +void VulkanglTFModel::loadImages(tinygltf::Model& input) +{ + // Images can be stored inside the glTF (which is the case for the sample model), so instead of directly + // loading them from disk, we fetch them from the glTF loader and upload the buffers + images.resize(input.images.size()); + for (size_t i = 0; i < input.images.size(); i++) { + tinygltf::Image& glTFImage = input.images[i]; + // Get the image data from the glTF loader + unsigned char* buffer = nullptr; + VkDeviceSize bufferSize = 0; + bool deleteBuffer = false; + // We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan + if (glTFImage.component == 3) { + bufferSize = glTFImage.width * glTFImage.height * 4; + buffer = new unsigned char[bufferSize]; + unsigned char* rgba = buffer; + unsigned char* rgb = &glTFImage.image[0]; + for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) { + memcpy(rgba, rgb, sizeof(unsigned char) * 3); + rgba += 4; + rgb += 3; } - else { - buffer = &glTFImage.image[0]; - bufferSize = glTFImage.image.size(); - } - // Load texture from image buffer - images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue); - } - } - - void loadTextures(tinygltf::Model& input) - { - textures.resize(input.textures.size()); - for (size_t i = 0; i < input.textures.size(); i++) { - textures[i].imageIndex = input.textures[i].source; - } - } - - void loadMaterials(tinygltf::Model& input) - { - materials.resize(input.materials.size()); - for (size_t i = 0; i < input.materials.size(); i++) { - // We only read the most basic properties required for our sample - tinygltf::Material glTFMaterial = input.materials[i]; - // Get the base color factor - if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) { - materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); - } - // Get base color texture index - if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) { - materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex(); - } - } - } - - // Helper functions for locating glTF nodes - - Node* findNode(Node* parent, uint32_t index) { - Node* nodeFound = nullptr; - if (parent->index == index) { - return parent; - } - for (auto& child : parent->children) { - nodeFound = findNode(child, index); - if (nodeFound) { - break; - } - } - return nodeFound; - } - - Node* nodeFromIndex(uint32_t index) { - Node* nodeFound = nullptr; - for (auto& node : nodes) { - nodeFound = findNode(node, index); - if (nodeFound) { - break; - } - } - return nodeFound; - } - - void loadSkins(tinygltf::Model& input) - { - skins.resize(input.skins.size()); - - for (size_t i = 0; i < input.skins.size(); i++) { - tinygltf::Skin glTFSkin = input.skins[i]; - - skins[i].name = glTFSkin.name; - // Find the root node of the skeleton - skins[i].skeletonRoot = nodeFromIndex(glTFSkin.skeleton); - - // Find joint nodes - // @todo: reference vs pointer - for (int jointIndex : glTFSkin.joints) { - Node* node = nodeFromIndex(jointIndex); - if (node) { - skins[i].joints.push_back(node); - } - } - - // Get the inverse bind matrices from the buffer associated to this skin - if (glTFSkin.inverseBindMatrices > -1) { - const tinygltf::Accessor& accessor = input.accessors[glTFSkin.inverseBindMatrices]; - const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; - const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; - skins[i].inverseBindMatrices.resize(accessor.count); - memcpy(skins[i].inverseBindMatrices.data(), &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(glm::mat4)); - } - - // Store inverse bind matrices for this skin in a shader storage buffer object - // To keep this sample simple, we create a host visible shader storage buffer - VK_CHECK_RESULT(vulkanDevice->createBuffer( - VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, - VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, - &skins[i].ssbo, - sizeof(glm::mat4) * skins[i].inverseBindMatrices.size(), - skins[i].inverseBindMatrices.data())); - VK_CHECK_RESULT(skins[i].ssbo.map()); - - // @todo: destroy; - } - } - - // @todo: Helper for getting buffer - - // @todo: comment - void loadAnimations(tinygltf::Model& input) - { - animations.resize(input.animations.size()); - - for (size_t i = 0; i < input.animations.size(); i++) { - // @todo; source...Animation etc.? - tinygltf::Animation srcAnimation = input.animations[i]; - animations[i].name = srcAnimation.name; - - // Samplers - // @todo: Link to specs - animations[i].samplers.resize(srcAnimation.samplers.size()); - for (size_t j = 0; j < srcAnimation.samplers.size(); j++) { - tinygltf::AnimationSampler srcSampler = srcAnimation.samplers[j]; - AnimationSampler& dstSampler = animations[i].samplers[j]; - // Interpolation type - dstSampler.interpolation = srcSampler.interpolation; - - // Read sampler input time values - { - const tinygltf::Accessor& accessor = input.accessors[srcSampler.input]; - const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; - const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; - const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; - const float* buf = static_cast(dataPtr); - for (size_t index = 0; index < accessor.count; index++) { - dstSampler.inputs.push_back(buf[index]); - } - for (auto input : animations[i].samplers[j].inputs) { - if (input < animations[i].start) { - animations[i].start = input; - }; - if (input > animations[i].end) { - animations[i].end = input; - } - } - } - - // Read sampler output Translate/rotate/scale values - { - const tinygltf::Accessor& accessor = input.accessors[srcSampler.output]; - const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; - const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; - const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; - switch (accessor.type) { - case TINYGLTF_TYPE_VEC3: { - const glm::vec3* buf = static_cast(dataPtr); - for (size_t index = 0; index < accessor.count; index++) { - dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f)); - } - break; - } - case TINYGLTF_TYPE_VEC4: { - const glm::vec4* buf = static_cast(dataPtr); - for (size_t index = 0; index < accessor.count; index++) { - dstSampler.outputsVec4.push_back(buf[index]); - } - break; - } - default: { - std::cout << "unknown type" << std::endl; - break; - } - } - } - } - - // Channels - animations[i].channels.resize(srcAnimation.channels.size()); - for (size_t j = 0; j < srcAnimation.channels.size(); j++) { - tinygltf::AnimationChannel srcChannel = srcAnimation.channels[j]; - AnimationChannel& dstChannel = animations[i].channels[j]; - // Target channel is either rotation, translation or scale - dstChannel.path = srcChannel.target_path; - dstChannel.samplerIndex = srcChannel.sampler; - dstChannel.node = nodeFromIndex(srcChannel.target_node); - } - } - } - - void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector& indexBuffer, std::vector& vertexBuffer) - { - VulkanglTFModel::Node* node = new VulkanglTFModel::Node{}; - node->parent = parent; - node->matrix = glm::mat4(1.0f); - node->index = nodeIndex; - node->skin = inputNode.skin; - - // Get the local node matrix - // It's either made up from translation, rotation, scale or a 4x4 matrix - if (inputNode.translation.size() == 3) { -// node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data()))); - node->translation = glm::make_vec3(inputNode.translation.data()); - } - if (inputNode.rotation.size() == 4) { - glm::quat q = glm::make_quat(inputNode.rotation.data()); -// node->matrix *= glm::mat4(q); - node->rotation = glm::mat4(q); - } - if (inputNode.scale.size() == 3) { -// node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data()))); - node->scale = glm::make_vec3(inputNode.scale.data()); - } - if (inputNode.matrix.size() == 16) { - node->matrix = glm::make_mat4x4(inputNode.matrix.data()); - }; - - // Load node's children - if (inputNode.children.size() > 0) { - for (size_t i = 0; i < inputNode.children.size(); i++) { - loadNode(input.nodes[inputNode.children[i]], input , node, inputNode.children[i], indexBuffer, vertexBuffer); - } - } - - // If the node contains mesh data, we load vertices and indices from the the buffers - // In glTF this is done via accessors and buffer views - if (inputNode.mesh > -1) { - const tinygltf::Mesh mesh = input.meshes[inputNode.mesh]; - // Iterate through all primitives of this node's mesh - for (size_t i = 0; i < mesh.primitives.size(); i++) { - const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i]; - uint32_t firstIndex = static_cast(indexBuffer.size()); - uint32_t vertexStart = static_cast(vertexBuffer.size()); - uint32_t indexCount = 0; - bool hasSkin = false; - // Vertices - { - const float* positionBuffer = nullptr; - const float* normalsBuffer = nullptr; - const float* texCoordsBuffer = nullptr; - const uint16_t* jointIndicesBuffer = nullptr; - const float* jointWeightsBuffer = nullptr; - size_t vertexCount = 0; - - // Get buffer data for vertex normals - if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) { - const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second]; - const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; - positionBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); - vertexCount = accessor.count; - } - // Get buffer data for vertex normals - if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) { - const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second]; - const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; - normalsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); - } - // Get buffer data for vertex texture coordinates - // glTF supports multiple sets, we only load the first one - if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) { - const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second]; - const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; - texCoordsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); - } - - // Get buffer data required for vertex skinning - // Get vertex joint indices - if (glTFPrimitive.attributes.find("JOINTS_0") != glTFPrimitive.attributes.end()) { - const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("JOINTS_0")->second]; - const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; - jointIndicesBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); - } - // Get vertex joint weights - if (glTFPrimitive.attributes.find("WEIGHTS_0") != glTFPrimitive.attributes.end()) { - const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("WEIGHTS_0")->second]; - const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; - jointWeightsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); - } - - hasSkin = (jointIndicesBuffer && jointWeightsBuffer); - - // Append data to model's vertex buffer - for (size_t v = 0; v < vertexCount; v++) { - Vertex vert{}; - vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); - vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); - vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f); - vert.color = glm::vec3(1.0f); - vert.jointIndices = hasSkin ? glm::vec4(glm::make_vec4(&jointIndicesBuffer[v * 4])) : glm::vec4(0.0f); - vert.jointWeights = hasSkin ? glm::make_vec4(&jointWeightsBuffer[v * 4]) : glm::vec4(0.0f); - vertexBuffer.push_back(vert); - } - } - // Indices - { - const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices]; - const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; - const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; - - indexCount += static_cast(accessor.count); - - // glTF supports different component types of indices - switch (accessor.componentType) { - case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: { - uint32_t* buf = new uint32_t[accessor.count]; - memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint32_t)); - for (size_t index = 0; index < accessor.count; index++) { - indexBuffer.push_back(buf[index] + vertexStart); - } - break; - } - case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: { - uint16_t* buf = new uint16_t[accessor.count]; - memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint16_t)); - for (size_t index = 0; index < accessor.count; index++) { - indexBuffer.push_back(buf[index] + vertexStart); - } - break; - } - case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: { - uint8_t* buf = new uint8_t[accessor.count]; - memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint8_t)); - for (size_t index = 0; index < accessor.count; index++) { - indexBuffer.push_back(buf[index] + vertexStart); - } - break; - } - default: - std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl; - return; - } - } - Primitive primitive{}; - primitive.firstIndex = firstIndex; - primitive.indexCount = indexCount; - primitive.materialIndex = glTFPrimitive.material; - node->mesh.primitives.push_back(primitive); - // @todo - //node->mesh.createUniformBuffer(vulkanDevice); - } - } - - if (parent) { - parent->children.push_back(node); + deleteBuffer = true; } else { - nodes.push_back(node); + buffer = &glTFImage.image[0]; + bufferSize = glTFImage.image.size(); + } + // Load texture from image buffer + images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue); + if (deleteBuffer) { + delete buffer; + } + } +} + +void VulkanglTFModel::loadTextures(tinygltf::Model& input) +{ + textures.resize(input.textures.size()); + for (size_t i = 0; i < input.textures.size(); i++) { + textures[i].imageIndex = input.textures[i].source; + } +} + +void VulkanglTFModel::loadMaterials(tinygltf::Model& input) +{ + materials.resize(input.materials.size()); + for (size_t i = 0; i < input.materials.size(); i++) { + // We only read the most basic properties required for our sample + tinygltf::Material glTFMaterial = input.materials[i]; + // Get the base color factor + if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) { + materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); + } + // Get base color texture index + if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) { + materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex(); + } + } +} + +// Helper functions for locating glTF nodes + +VulkanglTFModel::Node* VulkanglTFModel::findNode(Node* parent, uint32_t index) { + Node* nodeFound = nullptr; + if (parent->index == index) { + return parent; + } + for (auto& child : parent->children) { + nodeFound = findNode(child, index); + if (nodeFound) { + break; + } + } + return nodeFound; +} + +VulkanglTFModel::Node* VulkanglTFModel::nodeFromIndex(uint32_t index) { + Node* nodeFound = nullptr; + for (auto& node : nodes) { + nodeFound = findNode(node, index); + if (nodeFound) { + break; + } + } + return nodeFound; +} + +// @todo: comment +// @todo: Add link to spec +void VulkanglTFModel::loadSkins(tinygltf::Model& input) +{ + skins.resize(input.skins.size()); + + for (size_t i = 0; i < input.skins.size(); i++) { + tinygltf::Skin glTFSkin = input.skins[i]; + + skins[i].name = glTFSkin.name; + // Find the root node of the skeleton + skins[i].skeletonRoot = nodeFromIndex(glTFSkin.skeleton); + + // Find joint nodes + // @todo: reference vs pointer + for (int jointIndex : glTFSkin.joints) { + Node* node = nodeFromIndex(jointIndex); + if (node) { + skins[i].joints.push_back(node); + } + } + + // Get the inverse bind matrices from the buffer associated to this skin + if (glTFSkin.inverseBindMatrices > -1) { + const tinygltf::Accessor& accessor = input.accessors[glTFSkin.inverseBindMatrices]; + const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; + const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; + skins[i].inverseBindMatrices.resize(accessor.count); + memcpy(skins[i].inverseBindMatrices.data(), &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(glm::mat4)); + } + + // Store inverse bind matrices for this skin in a shader storage buffer object + // To keep this sample simple, we create a host visible shader storage buffer + VK_CHECK_RESULT(vulkanDevice->createBuffer( + VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, + &skins[i].ssbo, + sizeof(glm::mat4) * skins[i].inverseBindMatrices.size(), + skins[i].inverseBindMatrices.data())); + VK_CHECK_RESULT(skins[i].ssbo.map()); + + // @todo: destroy; + } +} + +// @todo: Helper for getting buffer + +// @todo: comment +void VulkanglTFModel::loadAnimations(tinygltf::Model& input) +{ + animations.resize(input.animations.size()); + + for (size_t i = 0; i < input.animations.size(); i++) { + // @todo; source...Animation etc.? + tinygltf::Animation srcAnimation = input.animations[i]; + animations[i].name = srcAnimation.name; + + // Samplers + // @todo: Link to specs + animations[i].samplers.resize(srcAnimation.samplers.size()); + for (size_t j = 0; j < srcAnimation.samplers.size(); j++) { + tinygltf::AnimationSampler srcSampler = srcAnimation.samplers[j]; + AnimationSampler& dstSampler = animations[i].samplers[j]; + // Interpolation type + dstSampler.interpolation = srcSampler.interpolation; + + // Read sampler input time values + { + const tinygltf::Accessor& accessor = input.accessors[srcSampler.input]; + const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; + const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; + const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; + const float* buf = static_cast(dataPtr); + for (size_t index = 0; index < accessor.count; index++) { + dstSampler.inputs.push_back(buf[index]); + } + for (auto input : animations[i].samplers[j].inputs) { + if (input < animations[i].start) { + animations[i].start = input; + }; + if (input > animations[i].end) { + animations[i].end = input; + } + } + } + + // Read sampler output Translate/rotate/scale values + { + const tinygltf::Accessor& accessor = input.accessors[srcSampler.output]; + const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; + const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; + const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; + switch (accessor.type) { + case TINYGLTF_TYPE_VEC3: { + const glm::vec3* buf = static_cast(dataPtr); + for (size_t index = 0; index < accessor.count; index++) { + dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f)); + } + break; + } + case TINYGLTF_TYPE_VEC4: { + const glm::vec4* buf = static_cast(dataPtr); + for (size_t index = 0; index < accessor.count; index++) { + dstSampler.outputsVec4.push_back(buf[index]); + } + break; + } + default: { + std::cout << "unknown type" << std::endl; + break; + } + } + } + } + + // Channels + animations[i].channels.resize(srcAnimation.channels.size()); + for (size_t j = 0; j < srcAnimation.channels.size(); j++) { + tinygltf::AnimationChannel srcChannel = srcAnimation.channels[j]; + AnimationChannel& dstChannel = animations[i].channels[j]; + // Target channel is either rotation, translation or scale + dstChannel.path = srcChannel.target_path; + dstChannel.samplerIndex = srcChannel.sampler; + dstChannel.node = nodeFromIndex(srcChannel.target_node); + } + } +} + +void VulkanglTFModel::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector& indexBuffer, std::vector& vertexBuffer) +{ + VulkanglTFModel::Node* node = new VulkanglTFModel::Node{}; + node->parent = parent; + node->matrix = glm::mat4(1.0f); + node->index = nodeIndex; + node->skin = inputNode.skin; + + // Get the local node matrix + // It's either made up from translation, rotation, scale or a 4x4 matrix + if (inputNode.translation.size() == 3) { + // node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data()))); + node->translation = glm::make_vec3(inputNode.translation.data()); + } + if (inputNode.rotation.size() == 4) { + glm::quat q = glm::make_quat(inputNode.rotation.data()); + // node->matrix *= glm::mat4(q); + node->rotation = glm::mat4(q); + } + if (inputNode.scale.size() == 3) { + // node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data()))); + node->scale = glm::make_vec3(inputNode.scale.data()); + } + if (inputNode.matrix.size() == 16) { + node->matrix = glm::make_mat4x4(inputNode.matrix.data()); + }; + + // Load node's children + if (inputNode.children.size() > 0) { + for (size_t i = 0; i < inputNode.children.size(); i++) { + loadNode(input.nodes[inputNode.children[i]], input, node, inputNode.children[i], indexBuffer, vertexBuffer); } } - /* - glTF vertex skinning functions - */ - glm::mat4 getNodeMatrix(VulkanglTFModel::Node* node) { + // If the node contains mesh data, we load vertices and indices from the the buffers + // In glTF this is done via accessors and buffer views + if (inputNode.mesh > -1) { + const tinygltf::Mesh mesh = input.meshes[inputNode.mesh]; + // Iterate through all primitives of this node's mesh + for (size_t i = 0; i < mesh.primitives.size(); i++) { + const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i]; + uint32_t firstIndex = static_cast(indexBuffer.size()); + uint32_t vertexStart = static_cast(vertexBuffer.size()); + uint32_t indexCount = 0; + bool hasSkin = false; + // Vertices + { + const float* positionBuffer = nullptr; + const float* normalsBuffer = nullptr; + const float* texCoordsBuffer = nullptr; + const uint16_t* jointIndicesBuffer = nullptr; + const float* jointWeightsBuffer = nullptr; + size_t vertexCount = 0; + + // Get buffer data for vertex normals + if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) { + const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second]; + const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; + positionBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); + vertexCount = accessor.count; + } + // Get buffer data for vertex normals + if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) { + const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second]; + const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; + normalsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); + } + // Get buffer data for vertex texture coordinates + // glTF supports multiple sets, we only load the first one + if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) { + const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second]; + const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; + texCoordsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); + } + + // Get buffer data required for vertex skinning + // Get vertex joint indices + if (glTFPrimitive.attributes.find("JOINTS_0") != glTFPrimitive.attributes.end()) { + const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("JOINTS_0")->second]; + const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; + jointIndicesBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); + } + // Get vertex joint weights + if (glTFPrimitive.attributes.find("WEIGHTS_0") != glTFPrimitive.attributes.end()) { + const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("WEIGHTS_0")->second]; + const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; + jointWeightsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); + } + + hasSkin = (jointIndicesBuffer && jointWeightsBuffer); + + // Append data to model's vertex buffer + for (size_t v = 0; v < vertexCount; v++) { + Vertex vert{}; + vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); + vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); + vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f); + vert.color = glm::vec3(1.0f); + vert.jointIndices = hasSkin ? glm::vec4(glm::make_vec4(&jointIndicesBuffer[v * 4])) : glm::vec4(0.0f); + vert.jointWeights = hasSkin ? glm::make_vec4(&jointWeightsBuffer[v * 4]) : glm::vec4(0.0f); + vertexBuffer.push_back(vert); + } + } + // Indices + { + const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices]; + const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; + const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; + + indexCount += static_cast(accessor.count); + + // glTF supports different component types of indices + switch (accessor.componentType) { + case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: { + uint32_t* buf = new uint32_t[accessor.count]; + memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint32_t)); + for (size_t index = 0; index < accessor.count; index++) { + indexBuffer.push_back(buf[index] + vertexStart); + } + break; + } + case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: { + uint16_t* buf = new uint16_t[accessor.count]; + memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint16_t)); + for (size_t index = 0; index < accessor.count; index++) { + indexBuffer.push_back(buf[index] + vertexStart); + } + break; + } + case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: { + uint8_t* buf = new uint8_t[accessor.count]; + memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint8_t)); + for (size_t index = 0; index < accessor.count; index++) { + indexBuffer.push_back(buf[index] + vertexStart); + } + break; + } + default: + std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl; + return; + } + } + Primitive primitive{}; + primitive.firstIndex = firstIndex; + primitive.indexCount = indexCount; + primitive.materialIndex = glTFPrimitive.material; + node->mesh.primitives.push_back(primitive); + // @todo + //node->mesh.createUniformBuffer(vulkanDevice); + } + } + + if (parent) { + parent->children.push_back(node); + } + else { + nodes.push_back(node); + } +} + +/* + glTF vertex skinning functions +*/ +glm::mat4 VulkanglTFModel::getNodeMatrix(VulkanglTFModel::Node* node) { + // Pass the node's matrix via push constanst + // Traverse the node hierarchy to the top-most parent to get the final matrix of the current node + glm::mat4 nodeMatrix = node->matrix; + VulkanglTFModel::Node* currentParent = node->parent; + while (currentParent) { + nodeMatrix = currentParent->matrix * nodeMatrix; + currentParent = currentParent->parent; + } + return nodeMatrix; +} + +glm::mat4 VulkanglTFModel::getNodeMatrix2(VulkanglTFModel::Node* node) { + glm::mat4 m = node->getLocalMatrix(); + VulkanglTFModel::Node* p = node->parent; + while (p) { + m = p->getLocalMatrix() * m; + p = p->parent; + } + return m; +} + +void VulkanglTFModel::updateJoints(VulkanglTFModel::Node* node) { + if (node->skin > -1) { + glm::mat4 m = getNodeMatrix2(node); + // Update joint matrices + glm::mat4 inverseTransform = glm::inverse(m); + Skin skin = skins[node->skin]; + size_t numJoints = (uint32_t)skin.joints.size(); + // @todo: linkt to skin spec gltf https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_020_Skins.md#the-joint-matrices + std::vector jointMatrices(numJoints); + // @todo: bail out if model has more joints than shader can handle + for (size_t i = 0; i < numJoints; i++) { + jointMatrices[i] = getNodeMatrix2(skin.joints[i]) * skin.inverseBindMatrices[i]; + jointMatrices[i] = inverseTransform * jointMatrices[i]; + } + // Update ssbo + skin.ssbo.copyTo(jointMatrices.data(), jointMatrices.size() * sizeof(glm::mat4)); + } + + for (auto& child : node->children) { + updateJoints(child); + } +} + +void VulkanglTFModel::updateAnimation(float deltaTime) +{ + if (activeAnimation> static_cast(animations.size()) - 1) { + std::cout << "No animation with index " << activeAnimation << std::endl; + return; + } + Animation& animation = animations[activeAnimation]; + animation.currentTime += deltaTime; + if (animation.currentTime > animation.end) { + animation.currentTime -= animation.end; + } + + bool updated = false; + for (auto& channel : animation.channels) { + AnimationSampler& sampler = animation.samplers[channel.samplerIndex]; + if (sampler.inputs.size() > sampler.outputsVec4.size()) { + continue; + } + + for (size_t i = 0; i < sampler.inputs.size() - 1; i++) { + if ((animation.currentTime >= sampler.inputs[i]) && (animation.currentTime <= sampler.inputs[i + 1])) { + float u = std::max(0.0f, animation.currentTime - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]); + if (u <= 1.0f) { + if (channel.path == "translation") { + glm::vec4 trans = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], u); + channel.node->translation = glm::vec3(trans); + updated = true; + } + if (channel.path == "rotation") { + glm::quat q1; + q1.x = sampler.outputsVec4[i].x; + q1.y = sampler.outputsVec4[i].y; + q1.z = sampler.outputsVec4[i].z; + q1.w = sampler.outputsVec4[i].w; + glm::quat q2; + q2.x = sampler.outputsVec4[i + 1].x; + q2.y = sampler.outputsVec4[i + 1].y; + q2.z = sampler.outputsVec4[i + 1].z; + q2.w = sampler.outputsVec4[i + 1].w; + channel.node->rotation = glm::normalize(glm::slerp(q1, q2, u)); + updated = true; + } + if (channel.path == "scale") { + glm::vec4 trans = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], u); + channel.node->scale = glm::vec3(trans); + updated = true; + } + } + } + } + } + if (updated) { + for (auto& node : nodes) { + updateJoints(node); + } + } +} + +/* + glTF rendering functions +*/ + +// Draw a single node including child nodes (if present) +void VulkanglTFModel::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node) +{ + if (node.mesh.primitives.size() > 0) { // Pass the node's matrix via push constanst // Traverse the node hierarchy to the top-most parent to get the final matrix of the current node - glm::mat4 nodeMatrix = node->matrix; - VulkanglTFModel::Node* currentParent = node->parent; + glm::mat4 nodeMatrix = node.matrix; + VulkanglTFModel::Node* currentParent = node.parent; while (currentParent) { nodeMatrix = currentParent->matrix * nodeMatrix; currentParent = currentParent->parent; } - return nodeMatrix; - } - - glm::mat4 getNodeMatrix2(VulkanglTFModel::Node* node) { - glm::mat4 m = node->getLocalMatrix(); - VulkanglTFModel::Node* p = node->parent; - while (p) { - m = p->getLocalMatrix() * m; - p = p->parent; - } - return m; - } - - void updateJoints(VulkanglTFModel::Node* node) { - if (node->skin > -1) { - glm::mat4 m = getNodeMatrix2(node); - // Update joint matrices - glm::mat4 inverseTransform = glm::inverse(m); - Skin skin = skins[node->skin]; - size_t numJoints = (uint32_t)skin.joints.size(); - // @todo: linkt to skin spec gltf https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_020_Skins.md#the-joint-matrices - std::vector jointMatrices(numJoints); - // @todo: bail out if model has more joints than shader can handle - for (size_t i = 0; i < numJoints; i++) { - jointMatrices[i] = getNodeMatrix2(skin.joints[i]) * skin.inverseBindMatrices[i]; - jointMatrices[i] = inverseTransform * jointMatrices[i]; - } - // Update ssbo - skin.ssbo.copyTo(jointMatrices.data(), jointMatrices.size() * sizeof(glm::mat4)); - } - - for (auto& child : node->children) { - updateJoints(child); - } - } - - void updateAnimation(uint32_t index, float time) - { - if (index > static_cast(animations.size()) - 1) { - std::cout << "No animation with index " << index << std::endl; - return; - } - Animation& animation = animations[index]; - - bool updated = false; - for (auto& channel : animation.channels) { - AnimationSampler& sampler = animation.samplers[channel.samplerIndex]; - if (sampler.inputs.size() > sampler.outputsVec4.size()) { - continue; - } - - for (size_t i = 0; i < sampler.inputs.size() - 1; i++) { - if ((time >= sampler.inputs[i]) && (time <= sampler.inputs[i + 1])) { - float u = std::max(0.0f, time - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]); - if (u <= 1.0f) { - if (channel.path == "translation") { - glm::vec4 trans = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], u); - channel.node->translation = glm::vec3(trans); - updated = true; - } - if (channel.path == "rotation") { - glm::quat q1; - q1.x = sampler.outputsVec4[i].x; - q1.y = sampler.outputsVec4[i].y; - q1.z = sampler.outputsVec4[i].z; - q1.w = sampler.outputsVec4[i].w; - glm::quat q2; - q2.x = sampler.outputsVec4[i + 1].x; - q2.y = sampler.outputsVec4[i + 1].y; - q2.z = sampler.outputsVec4[i + 1].z; - q2.w = sampler.outputsVec4[i + 1].w; - channel.node->rotation = glm::normalize(glm::slerp(q1, q2, u)); - updated = true; - } - if (channel.path == "scale") { - glm::vec4 trans = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], u); - channel.node->scale = glm::vec3(trans); - updated = true; - } - } - } - } - } - if (updated) { - for (auto& node : nodes) { - updateJoints(node); + // Pass the final matrix to the vertex shader using push constants + vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix); + // Bind SSBO with skin data for this node to set 1 + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &skins[node.skin].descriptorSet, 0, nullptr); + for (VulkanglTFModel::Primitive& primitive : node.mesh.primitives) { + if (primitive.indexCount > 0) { + // Get the texture index for this primitive + VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex]; + // Bind the descriptor for the current primitive's texture to set 2 + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr); + vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); } } } - - /* - glTF rendering functions - */ - - // Draw a single node including child nodes (if present) - void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node) - { - if (node.mesh.primitives.size() > 0) { - // Pass the node's matrix via push constanst - // Traverse the node hierarchy to the top-most parent to get the final matrix of the current node - glm::mat4 nodeMatrix = node.matrix; - VulkanglTFModel::Node* currentParent = node.parent; - while (currentParent) { - nodeMatrix = currentParent->matrix * nodeMatrix; - currentParent = currentParent->parent; - } - // Pass the final matrix to the vertex shader using push constants - vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix); - // @todo - if (node.skin > -1) { - vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &skins[node.skin].descriptorSet, 0, nullptr); - } else { - //@todo... - } - for (VulkanglTFModel::Primitive& primitive : node.mesh.primitives) { - if (primitive.indexCount > 0) { - // Get the texture index for this primitive - VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex]; - // Bind the descriptor for the current primitive's texture - vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr); - vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); - } - } - } - for (auto& child : node.children) { - drawNode(commandBuffer, pipelineLayout, *child); - } + for (auto& child : node.children) { + drawNode(commandBuffer, pipelineLayout, *child); } +} - // Draw the glTF scene starting at the top-level-nodes - void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout) - { - // All vertices and indices are stored in single buffers, so we only need to bind once - VkDeviceSize offsets[1] = { 0 }; - vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets); - vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); - // Render all nodes at top-level - for (auto& node : nodes) { - drawNode(commandBuffer, pipelineLayout, *node); - } - } - -}; - -class VulkanExample : public VulkanExampleBase +// Draw the glTF scene starting at the top-level-nodes +void VulkanglTFModel::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout) { -public: - bool wireframe = false; - float animationTimer = 0.0f; + // All vertices and indices are stored in single buffers, so we only need to bind once + VkDeviceSize offsets[1] = { 0 }; + vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets); + vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); + // Render all nodes at top-level + for (auto& node : nodes) { + drawNode(commandBuffer, pipelineLayout, *node); + } +} - VulkanglTFModel glTFModel; - struct ShaderData { - vks::Buffer buffer; - struct Values { - glm::mat4 projection; - glm::mat4 model; - glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, -5.0f, 1.0f); - } values; - } shaderData; +/* - struct Pipelines { - VkPipeline solid; - VkPipeline wireframe = VK_NULL_HANDLE; - } pipelines; + Vulkan Example class - VkPipelineLayout pipelineLayout; - VkDescriptorSet descriptorSet; +*/ - struct DescriptorSetLayouts { - VkDescriptorSetLayout matrices; - VkDescriptorSetLayout textures; - VkDescriptorSetLayout jointMatrices; - } descriptorSetLayouts; +VulkanExample::VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) +{ + title = "glTF vertex skinning"; + camera.type = Camera::CameraType::lookat; + camera.flipY = true; + camera.setPosition(glm::vec3(0.0f, 0.75f, -2.0f)); + camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f)); + camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); + settings.overlay = true; +} - VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) - { - title = "glTF vertex skinning"; - camera.type = Camera::CameraType::lookat; - camera.flipY = true; - camera.setPosition(glm::vec3(0.0f, 0.75f, -2.0f)); - camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f)); - camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); - settings.overlay = true; +VulkanExample::~VulkanExample() +{ + // Clean up used Vulkan resources + // Note : Inherited destructor cleans up resources stored in base class + vkDestroyPipeline(device, pipelines.solid, nullptr); + if (pipelines.wireframe != VK_NULL_HANDLE) { + vkDestroyPipeline(device, pipelines.wireframe, nullptr); } - ~VulkanExample() + vkDestroyPipelineLayout(device, pipelineLayout, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); + + shaderData.buffer.destroy(); +} + +void VulkanExample::getEnabledFeatures() +{ + // Fill mode non solid is required for wireframe display + if (deviceFeatures.fillModeNonSolid) { + enabledFeatures.fillModeNonSolid = VK_TRUE; + }; +} + +void VulkanExample::buildCommandBuffers() +{ + VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); + + VkClearValue clearValues[2]; + clearValues[0].color = defaultClearColor; + clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };; + clearValues[1].depthStencil = { 1.0f, 0 }; + + VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); + renderPassBeginInfo.renderPass = renderPass; + renderPassBeginInfo.renderArea.offset.x = 0; + renderPassBeginInfo.renderArea.offset.y = 0; + renderPassBeginInfo.renderArea.extent.width = width; + renderPassBeginInfo.renderArea.extent.height = height; + renderPassBeginInfo.clearValueCount = 2; + renderPassBeginInfo.pClearValues = clearValues; + + const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); + const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); + + for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { - // Clean up used Vulkan resources - // Note : Inherited destructor cleans up resources stored in base class - vkDestroyPipeline(device, pipelines.solid, nullptr); - if (pipelines.wireframe != VK_NULL_HANDLE) { - vkDestroyPipeline(device, pipelines.wireframe, nullptr); - } - - vkDestroyPipelineLayout(device, pipelineLayout, nullptr); - vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); - vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); - - shaderData.buffer.destroy(); + renderPassBeginInfo.framebuffer = frameBuffers[i]; + VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); + vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); + vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); + vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); + // Bind scene matrices descriptor to set 0 + vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); + vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid); + glTFModel.draw(drawCmdBuffers[i], pipelineLayout); + drawUI(drawCmdBuffers[i]); + vkCmdEndRenderPass(drawCmdBuffers[i]); + VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } +} - virtual void getEnabledFeatures() - { - // Fill mode non solid is required for wireframe display - if (deviceFeatures.fillModeNonSolid) { - enabledFeatures.fillModeNonSolid = VK_TRUE; - }; - } +void VulkanExample::loadglTFFile(std::string filename) +{ + tinygltf::Model glTFInput; + tinygltf::TinyGLTF gltfContext; + std::string error, warning; - void buildCommandBuffers() - { - VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); - - VkClearValue clearValues[2]; - clearValues[0].color = defaultClearColor; - clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };; - clearValues[1].depthStencil = { 1.0f, 0 }; - - VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); - renderPassBeginInfo.renderPass = renderPass; - renderPassBeginInfo.renderArea.offset.x = 0; - renderPassBeginInfo.renderArea.offset.y = 0; - renderPassBeginInfo.renderArea.extent.width = width; - renderPassBeginInfo.renderArea.extent.height = height; - renderPassBeginInfo.clearValueCount = 2; - renderPassBeginInfo.pClearValues = clearValues; - - const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); - const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); - - for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) - { - renderPassBeginInfo.framebuffer = frameBuffers[i]; - VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); - vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); - vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); - vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); - // Bind scene matrices descriptor to set 0 - vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); - vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid); - glTFModel.draw(drawCmdBuffers[i], pipelineLayout); - drawUI(drawCmdBuffers[i]); - vkCmdEndRenderPass(drawCmdBuffers[i]); - VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); - } - } - - void loadglTFFile(std::string filename) - { - tinygltf::Model glTFInput; - tinygltf::TinyGLTF gltfContext; - std::string error, warning; - - this->device = device; + this->device = device; #if defined(__ANDROID__) - // On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager - // We let tinygltf handle this, by passing the asset manager of our app - tinygltf::asset_manager = androidApp->activity->assetManager; + // On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager + // We let tinygltf handle this, by passing the asset manager of our app + tinygltf::asset_manager = androidApp->activity->assetManager; #endif - bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename); + bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename); - // Pass some Vulkan resources required for setup and rendering to the glTF model loading class - glTFModel.vulkanDevice = vulkanDevice; - glTFModel.copyQueue = queue; + // Pass some Vulkan resources required for setup and rendering to the glTF model loading class + glTFModel.vulkanDevice = vulkanDevice; + glTFModel.copyQueue = queue; - std::vector indexBuffer; - std::vector vertexBuffer; + std::vector indexBuffer; + std::vector vertexBuffer; - if (fileLoaded) { - glTFModel.loadImages(glTFInput); - glTFModel.loadMaterials(glTFInput); - glTFModel.loadTextures(glTFInput); - const tinygltf::Scene& scene = glTFInput.scenes[0]; - for (size_t i = 0; i < scene.nodes.size(); i++) { - const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; - glTFModel.loadNode(node, glTFInput, nullptr, scene.nodes[i], indexBuffer, vertexBuffer); - } - glTFModel.loadSkins(glTFInput); - glTFModel.loadAnimations(glTFInput); - // Calculate initial pose - // @todo: Ugly code - // @todo: Linear nodes? - for (auto node : glTFModel.nodes) { - glTFModel.updateJoints(node); - } + if (fileLoaded) { + glTFModel.loadImages(glTFInput); + glTFModel.loadMaterials(glTFInput); + glTFModel.loadTextures(glTFInput); + const tinygltf::Scene& scene = glTFInput.scenes[0]; + for (size_t i = 0; i < scene.nodes.size(); i++) { + const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; + glTFModel.loadNode(node, glTFInput, nullptr, scene.nodes[i], indexBuffer, vertexBuffer); } - else { - vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1); - return; + glTFModel.loadSkins(glTFInput); + glTFModel.loadAnimations(glTFInput); + // Calculate initial pose + for (auto node : glTFModel.nodes) { + glTFModel.updateJoints(node); } - - // Create and upload vertex and index buffer - // We will be using one single vertex buffer and one single index buffer for the whole glTF scene - // Primitives (of the glTF model) will then index into these using index offsets - - size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex); - size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); - glTFModel.indices.count = static_cast(indexBuffer.size()); - - struct StagingBuffer { - VkBuffer buffer; - VkDeviceMemory memory; - } vertexStaging, indexStaging; - - // Create host visible staging buffers (source) - VK_CHECK_RESULT(vulkanDevice->createBuffer( - VK_BUFFER_USAGE_TRANSFER_SRC_BIT, - VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, - vertexBufferSize, - &vertexStaging.buffer, - &vertexStaging.memory, - vertexBuffer.data())); - // Index data - VK_CHECK_RESULT(vulkanDevice->createBuffer( - VK_BUFFER_USAGE_TRANSFER_SRC_BIT, - VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, - indexBufferSize, - &indexStaging.buffer, - &indexStaging.memory, - indexBuffer.data())); - - // Create device local buffers (targat) - VK_CHECK_RESULT(vulkanDevice->createBuffer( - VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, - VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, - vertexBufferSize, - &glTFModel.vertices.buffer, - &glTFModel.vertices.memory)); - VK_CHECK_RESULT(vulkanDevice->createBuffer( - VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, - VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, - indexBufferSize, - &glTFModel.indices.buffer, - &glTFModel.indices.memory)); - - // Copy data from staging buffers (host) do device local buffer (gpu) - VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); - VkBufferCopy copyRegion = {}; - copyRegion.size = vertexBufferSize; - vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, glTFModel.vertices.buffer, 1, ©Region); - copyRegion.size = indexBufferSize; - vkCmdCopyBuffer(copyCmd, indexStaging.buffer, glTFModel.indices.buffer, 1, ©Region); - vulkanDevice->flushCommandBuffer(copyCmd, queue, true); - - // Free staging resources - vkDestroyBuffer(device, vertexStaging.buffer, nullptr); - vkFreeMemory(device, vertexStaging.memory, nullptr); - vkDestroyBuffer(device, indexStaging.buffer, nullptr); - vkFreeMemory(device, indexStaging.memory, nullptr); + } + else { + vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1); + return; } - void loadAssets() - { - loadglTFFile(getAssetPath() + "models/CesiumMan/glTF/CesiumMan.gltf"); - } + // Create and upload vertex and index buffer + size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex); + size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); + glTFModel.indices.count = static_cast(indexBuffer.size()); - void setupDescriptors() - { - /* - This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures) - */ + struct StagingBuffer { + VkBuffer buffer; + VkDeviceMemory memory; + } vertexStaging, indexStaging; - std::vector poolSizes = { - vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), - // One combined image sampler per material image/texture - vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(glTFModel.images.size())), - // One ssbo per skin - vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, static_cast(glTFModel.skins.size())), - }; - // Number of descriptor sets = One for the scene ubo + one per image + one per skin - const uint32_t maxSetCount = static_cast(glTFModel.images.size()) + static_cast(glTFModel.skins.size()) + 1; - VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); - VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); + // Create host visible staging buffers (source) + VK_CHECK_RESULT(vulkanDevice->createBuffer( + VK_BUFFER_USAGE_TRANSFER_SRC_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, + vertexBufferSize, + &vertexStaging.buffer, + &vertexStaging.memory, + vertexBuffer.data())); + // Index data + VK_CHECK_RESULT(vulkanDevice->createBuffer( + VK_BUFFER_USAGE_TRANSFER_SRC_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, + indexBufferSize, + &indexStaging.buffer, + &indexStaging.memory, + indexBuffer.data())); - // Descriptor set layouts - VkDescriptorSetLayoutBinding setLayoutBinding{}; - VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1); + // Create device local buffers (targat) + VK_CHECK_RESULT(vulkanDevice->createBuffer( + VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, + VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, + vertexBufferSize, + &glTFModel.vertices.buffer, + &glTFModel.vertices.memory)); + VK_CHECK_RESULT(vulkanDevice->createBuffer( + VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, + VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, + indexBufferSize, + &glTFModel.indices.buffer, + &glTFModel.indices.memory)); - // Descriptor set layout for passing matrices - setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); - VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); - - // Descriptor set layout for passing material textures - setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); - VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); + // Copy data from staging buffers (host) do device local buffer (gpu) + VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); + VkBufferCopy copyRegion = {}; + copyRegion.size = vertexBufferSize; + vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, glTFModel.vertices.buffer, 1, ©Region); + copyRegion.size = indexBufferSize; + vkCmdCopyBuffer(copyCmd, indexStaging.buffer, glTFModel.indices.buffer, 1, ©Region); + vulkanDevice->flushCommandBuffer(copyCmd, queue, true); - // Descriptor set layout for passing skin joint matrices - setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); - VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.jointMatrices)); + // Free staging resources + vkDestroyBuffer(device, vertexStaging.buffer, nullptr); + vkFreeMemory(device, vertexStaging.memory, nullptr); + vkDestroyBuffer(device, indexStaging.buffer, nullptr); + vkFreeMemory(device, indexStaging.memory, nullptr); +} - // The pipeline layout uses three sets: - // Set 0 = Scene matrices - // Set 1 = Material texture - // Set 2 = Joint matrices - std::array setLayouts = { - descriptorSetLayouts.matrices, - descriptorSetLayouts.textures, - descriptorSetLayouts.jointMatrices - }; - VkPipelineLayoutCreateInfo pipelineLayoutCI= vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); +void VulkanExample::setupDescriptors() +{ + /* + This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures) + */ - // We will use push constants to push the local matrices of a primitive to the vertex shader - VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); - // Push constant ranges are part of the pipeline layout - pipelineLayoutCI.pushConstantRangeCount = 1; - pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; - VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); + std::vector poolSizes = { + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), + // One combined image sampler per material image/texture + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(glTFModel.images.size())), + // One ssbo per skin + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, static_cast(glTFModel.skins.size())), + }; + // Number of descriptor sets = One for the scene ubo + one per image + one per skin + const uint32_t maxSetCount = static_cast(glTFModel.images.size()) + static_cast(glTFModel.skins.size()) + 1; + VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); + VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); - // Descriptor set for scene matrices - VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); - VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); - VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor); + // Descriptor set layouts + VkDescriptorSetLayoutBinding setLayoutBinding{}; + VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1); + + // Descriptor set layout for passing matrices + setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); + + // Descriptor set layout for passing material textures + setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); + + // Descriptor set layout for passing skin joint matrices + setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.jointMatrices)); + + // The pipeline layout uses three sets: + // Set 0 = Scene matrices (VS) + // Set 1 = Joint matrices (VS) + // Set 2 = Material texture (FS) + std::array setLayouts = { + descriptorSetLayouts.matrices, + descriptorSetLayouts.jointMatrices, + descriptorSetLayouts.textures + }; + VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); + + // We will use push constants to push the local matrices of a primitive to the vertex shader + VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); + // Push constant ranges are part of the pipeline layout + pipelineLayoutCI.pushConstantRangeCount = 1; + pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; + VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); + + // Descriptor set for scene matrices + VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); + + // Descriptor set for glTF model skin joint matrices + for (auto& skin : glTFModel.skins) { + const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.jointMatrices, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skin.descriptorSet)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skin.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &skin.ssbo.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); - - // Descriptor sets for glTF model materials - for (auto& image : glTFModel.images) { - const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); - VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet)); - VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor); - vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); - } - - // Descriptor set for glTF model skin joint matrices - for (auto& skin : glTFModel.skins) { - const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.jointMatrices, 1); - VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skin.descriptorSet)); - VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skin.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &skin.ssbo.descriptor); - vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); - } } - void preparePipelines() - { - VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); - VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); - VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); - VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); - VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); - VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); - VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); - const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; - VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); - // Vertex input bindings and attributes - const std::vector vertexInputBindings = { - vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), - }; - const std::vector vertexInputAttributes = { - vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), - vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)), - vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), - vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), - vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(VulkanglTFModel::Vertex, jointIndices)), - vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(VulkanglTFModel::Vertex, jointWeights)), - }; - VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); - vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); - vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); - vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); - vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); - - const std::array shaderStages = { - loadShader(getAssetPath() + "shaders/gltfskinning/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), - loadShader(getAssetPath() + "shaders/gltfskinning/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT) - }; - - VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); - pipelineCI.pVertexInputState = &vertexInputStateCI; - pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; - pipelineCI.pRasterizationState = &rasterizationStateCI; - pipelineCI.pColorBlendState = &colorBlendStateCI; - pipelineCI.pMultisampleState = &multisampleStateCI; - pipelineCI.pViewportState = &viewportStateCI; - pipelineCI.pDepthStencilState = &depthStencilStateCI; - pipelineCI.pDynamicState = &dynamicStateCI; - pipelineCI.stageCount = static_cast(shaderStages.size()); - pipelineCI.pStages = shaderStages.data(); - - // Solid rendering pipeline - VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid)); - - // Wire frame rendering pipeline - if (deviceFeatures.fillModeNonSolid) { - rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE; - rasterizationStateCI.lineWidth = 1.0f; - VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe)); - } + // Descriptor sets for glTF model materials + for (auto& image : glTFModel.images) { + const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } +} - void prepareUniformBuffers() - { - VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.buffer, sizeof(shaderData.values))); - VK_CHECK_RESULT(shaderData.buffer.map()); +void VulkanExample::preparePipelines() +{ + VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); + VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); + VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); + VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); + VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); + VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); + VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); + const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; + VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); + // Vertex input bindings and attributes + const std::vector vertexInputBindings = { + vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), + }; + const std::vector vertexInputAttributes = { + vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), + vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)), + vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), + vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), + vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(VulkanglTFModel::Vertex, jointIndices)), + vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(VulkanglTFModel::Vertex, jointWeights)), + }; + VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); + vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); + vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); + vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); + vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); + + const std::array shaderStages = { + loadShader(getAssetPath() + "shaders/gltfskinning/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), + loadShader(getAssetPath() + "shaders/gltfskinning/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT) + }; + + VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); + pipelineCI.pVertexInputState = &vertexInputStateCI; + pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; + pipelineCI.pRasterizationState = &rasterizationStateCI; + pipelineCI.pColorBlendState = &colorBlendStateCI; + pipelineCI.pMultisampleState = &multisampleStateCI; + pipelineCI.pViewportState = &viewportStateCI; + pipelineCI.pDepthStencilState = &depthStencilStateCI; + pipelineCI.pDynamicState = &dynamicStateCI; + pipelineCI.stageCount = static_cast(shaderStages.size()); + pipelineCI.pStages = shaderStages.data(); + + // Solid rendering pipeline + VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid)); + + // Wire frame rendering pipeline + if (deviceFeatures.fillModeNonSolid) { + rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE; + rasterizationStateCI.lineWidth = 1.0f; + VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe)); + } +} + +void VulkanExample::prepareUniformBuffers() +{ + VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.buffer, sizeof(shaderData.values))); + VK_CHECK_RESULT(shaderData.buffer.map()); + updateUniformBuffers(); +} + +void VulkanExample::updateUniformBuffers() +{ + shaderData.values.projection = camera.matrices.perspective; + shaderData.values.model = camera.matrices.view; + memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); +} + +void VulkanExample::loadAssets() +{ + loadglTFFile(getAssetPath() + "models/CesiumMan/glTF/CesiumMan.gltf"); +} + +void VulkanExample::prepare() +{ + VulkanExampleBase::prepare(); + loadAssets(); + prepareUniformBuffers(); + setupDescriptors(); + preparePipelines(); + buildCommandBuffers(); + prepared = true; +} + +void VulkanExample::render() +{ + renderFrame(); + if (camera.updated) { updateUniformBuffers(); } - - void updateUniformBuffers() - { - shaderData.values.projection = camera.matrices.perspective; - shaderData.values.model = camera.matrices.view; - memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); + // @todo: poi + if (!paused) { + glTFModel.updateAnimation(frameTimer); } +} - void prepare() - { - VulkanExampleBase::prepare(); - loadAssets(); - prepareUniformBuffers(); - setupDescriptors(); - preparePipelines(); - buildCommandBuffers(); - prepared = true; - } - - virtual void render() - { - renderFrame(); - if (camera.updated) { - updateUniformBuffers(); - } - // @todo: poi - if (!paused) { - if (glTFModel.animations.size() > 0) { - animationTimer += frameTimer * 0.75f; - if (animationTimer > glTFModel.animations[0].end) { - animationTimer -= glTFModel.animations[0].end; - } - glTFModel.updateAnimation(0, animationTimer); - } +void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay) +{ + if (overlay->header("Settings")) { + if (overlay->checkBox("Wireframe", &wireframe)) { + buildCommandBuffers(); } } - - virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) - { - if (overlay->header("Settings")) { - if (overlay->checkBox("Wireframe", &wireframe)) { - buildCommandBuffers(); - } - } - } -}; +} VULKAN_EXAMPLE_MAIN() \ No newline at end of file diff --git a/examples/gltfskinning/gltfskinning.h b/examples/gltfskinning/gltfskinning.h new file mode 100644 index 00000000..091bc291 --- /dev/null +++ b/examples/gltfskinning/gltfskinning.h @@ -0,0 +1,251 @@ +/* +* Vulkan Example - glTF skinned animation +* +* Copyright (C) 2020 by Sascha Willems - www.saschawillems.de +* +* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) +*/ + +/* + * This is based on the glTF scene example and only the parts that show added functionality are commented + + * @todo: Rework comments + * Shows how to load and display a simple scene from a glTF file + * Note that this isn't a complete glTF loader and only basic functions are shown here + * This means no complex materials, no animations, no skins, etc. + * For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0 + * + * Other samples will load models using a dedicated model loader with more features (see base/VulkanglTFModel.hpp) + * + * If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/ + */ + + // @todo: add link to https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_020_Skins.md + +#include +#include +#include +#include +#include + +#define GLM_FORCE_RADIANS +#define GLM_FORCE_DEPTH_ZERO_TO_ONE +#include +#include +#include + +#define TINYGLTF_IMPLEMENTATION +#define STB_IMAGE_IMPLEMENTATION +#define TINYGLTF_NO_STB_IMAGE_WRITE +#ifdef VK_USE_PLATFORM_ANDROID_KHR +#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS +#endif +#include "tiny_gltf.h" + +#include +#include "vulkanexamplebase.h" +#include "VulkanTexture.hpp" + +#define ENABLE_VALIDATION false + +// Contains everything required to render a glTF model in Vulkan +// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure +class VulkanglTFModel +{ +public: + vks::VulkanDevice* vulkanDevice; + VkQueue copyQueue; + + struct Vertex { + glm::vec3 pos; + glm::vec3 normal; + glm::vec2 uv; + glm::vec3 color; + // Contains indices of the joints that effect this vertex + glm::vec4 jointIndices; + // Contains the weights that define how strongly this vertex is affected by above joints + glm::vec4 jointWeights; + }; + + struct { + VkBuffer buffer; + VkDeviceMemory memory; + } vertices; + + struct { + int count; + VkBuffer buffer; + VkDeviceMemory memory; + } indices; + + struct Node; + + struct Material { + glm::vec4 baseColorFactor = glm::vec4(1.0f); + uint32_t baseColorTextureIndex; + }; + + struct Image { + vks::Texture2D texture; + VkDescriptorSet descriptorSet; + }; + + struct Texture { + int32_t imageIndex; + }; + + struct Primitive { + uint32_t firstIndex; + uint32_t indexCount; + int32_t materialIndex; + }; + + struct Mesh { + std::vector primitives; + }; + + struct Node { + Node* parent; + uint32_t index; + std::vector children; + Mesh mesh; + // Matrix components are stored separately as they are affected by animations + glm::vec3 translation{}; + glm::vec3 scale{ 1.0f }; + glm::quat rotation{}; + // Index of the skin for this node + int32_t skin = -1; + glm::mat4 matrix; + // Gets the current local matrix based on translation, rotation and scale, which can all be affected by animations + glm::mat4 getLocalMatrix(); + }; + + // A skin contains the joints and matrices applied during vertex skinning + // @todo: Add link to spec + struct Skin { + std::string name; + Node* skeletonRoot = nullptr; + std::vector inverseBindMatrices; + std::vector joints; + // POI: Store joint matrices in an SSBO + // @todo: proper comment + std::vector jointMatrices; + vks::Buffer ssbo; + VkDescriptorSet descriptorSet; + }; + + + /* + glTF animation channel + // @todo: Comment + */ + struct AnimationChannel { + std::string path; + Node* node; + uint32_t samplerIndex; + }; + + /* + glTF animation sampler + // @todo: Comment + */ + struct AnimationSampler { + std::string interpolation; + std::vector inputs; + std::vector outputsVec4; + }; + + /* + glTF animation + // @todo: Comment + */ + struct Animation { + std::string name; + std::vector samplers; + std::vector channels; + float start = std::numeric_limits::max(); + float end = std::numeric_limits::min(); + float currentTime = 0.0f; + }; + + std::vector images; + std::vector textures; + std::vector materials; + std::vector nodes; + + // Store skins and animations + std::vector skins; + std::vector animations; + + // POI: @todo: document + struct MeshData { + glm::mat4 jointMatrix[32]{}; + }; + struct ShaderData { + vks::Buffer buffer; + } shaderData; + VkDescriptorSet descriptorSet; + std::vector meshdata; + + uint32_t activeAnimation = 0; + + ~VulkanglTFModel(); + void loadImages(tinygltf::Model& input); + void loadTextures(tinygltf::Model& input); + void loadMaterials(tinygltf::Model& input); + Node* findNode(Node* parent, uint32_t index); + Node* nodeFromIndex(uint32_t index); + void loadSkins(tinygltf::Model& input); + void loadAnimations(tinygltf::Model& input); + void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector& indexBuffer, std::vector& vertexBuffer); + glm::mat4 getNodeMatrix(VulkanglTFModel::Node* node); + glm::mat4 getNodeMatrix2(VulkanglTFModel::Node* node); + void updateJoints(VulkanglTFModel::Node* node); + void updateAnimation(float deltaTime); + void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node); + void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout); +}; + +class VulkanExample : public VulkanExampleBase +{ +public: + bool wireframe = false; + + struct ShaderData { + vks::Buffer buffer; + struct Values { + glm::mat4 projection; + glm::mat4 model; + glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f); + } values; + } shaderData; + + VkPipelineLayout pipelineLayout; + struct Pipelines { + VkPipeline solid; + VkPipeline wireframe = VK_NULL_HANDLE; + } pipelines; + + struct DescriptorSetLayouts { + VkDescriptorSetLayout matrices; + VkDescriptorSetLayout textures; + VkDescriptorSetLayout jointMatrices; + } descriptorSetLayouts; + VkDescriptorSet descriptorSet; + + VulkanglTFModel glTFModel; + + VulkanExample(); + ~VulkanExample(); + void loadglTFFile(std::string filename); + virtual void getEnabledFeatures(); + void buildCommandBuffers(); + void loadAssets(); + void setupDescriptors(); + void preparePipelines(); + void prepareUniformBuffers(); + void updateUniformBuffers(); + void prepare(); + virtual void render(); + virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay); +};