Use shader storage buffer to pass lights to shader

This commit is contained in:
Sascha Willems 2023-12-13 18:31:49 +01:00
parent a467d94159
commit 1a635f16ab
5 changed files with 53 additions and 95 deletions

View file

@ -21,8 +21,6 @@
#define ENABLE_VALIDATION false
#define NUM_LIGHTS 64
class VulkanExample : public VulkanExampleBase
{
public:
@ -47,14 +45,12 @@ public:
float radius;
};
struct {
Light lights[NUM_LIGHTS];
} uboLights;
std::array<Light, 64> lights;
struct {
vks::Buffer GBuffer;
vks::Buffer lights;
} uniformBuffers;
} buffers;
struct {
VkPipeline offscreen;
@ -128,8 +124,8 @@ public:
clearAttachment(&attachments.albedo);
textures.glass.destroy();
uniformBuffers.GBuffer.destroy();
uniformBuffers.lights.destroy();
buffers.GBuffer.destroy();
buffers.lights.destroy();
}
// Enable physical device features required for this example
@ -526,6 +522,7 @@ public:
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 4),
};
@ -556,7 +553,7 @@ public:
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.GBuffer.descriptor)
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &buffers.GBuffer.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
@ -617,7 +614,7 @@ public:
// Binding 2: Albedo input attachment
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
// Binding 3: Light positions
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 3),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 3),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
@ -648,7 +645,7 @@ public:
// Binding 2: Albedo texture target
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 2, &texDescriptorAlbedo),
// Binding 4: Fragment shader lights
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3, &uniformBuffers.lights.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &buffers.lights.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
@ -668,22 +665,6 @@ public:
shaderStages[0] = loadShader(getShadersPath() + "subpasses/composition.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "subpasses/composition.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use specialization constants to pass number of lights to the shader
VkSpecializationMapEntry specializationEntry{};
specializationEntry.constantID = 0;
specializationEntry.offset = 0;
specializationEntry.size = sizeof(uint32_t);
uint32_t specializationData = NUM_LIGHTS;
VkSpecializationInfo specializationInfo;
specializationInfo.mapEntryCount = 1;
specializationInfo.pMapEntries = &specializationEntry;
specializationInfo.dataSize = sizeof(specializationData);
specializationInfo.pData = &specializationData;
shaderStages[1].pSpecializationInfo = &specializationInfo;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.composition, renderPass, 0);
VkPipelineVertexInputStateCreateInfo emptyInputState{};
@ -727,7 +708,7 @@ public:
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.transparent));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.GBuffer.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &buffers.GBuffer.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, &texDescriptorPosition),
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.glass.descriptor),
};
@ -755,13 +736,13 @@ public:
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Deferred vertex shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.GBuffer, sizeof(uboGBuffer));
VK_CHECK_RESULT(uniformBuffers.GBuffer.map());
// Matrices
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffers.GBuffer, sizeof(uboGBuffer));
VK_CHECK_RESULT(buffers.GBuffer.map());
// Deferred fragment shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.lights, sizeof(uboLights));
VK_CHECK_RESULT(uniformBuffers.lights.map());
// Lights
vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffers.lights, lights.size() * sizeof(Light));
VK_CHECK_RESULT(buffers.lights.map());
// Update
updateUniformBufferDeferredMatrices();
@ -772,7 +753,7 @@ public:
uboGBuffer.projection = camera.matrices.perspective;
uboGBuffer.view = camera.matrices.view;
uboGBuffer.model = glm::mat4(1.0f);
memcpy(uniformBuffers.GBuffer.mapped, &uboGBuffer, sizeof(uboGBuffer));
memcpy(buffers.GBuffer.mapped, &uboGBuffer, sizeof(uboGBuffer));
}
void initLights()
@ -786,18 +767,20 @@ public:
glm::vec3(1.0f, 1.0f, 0.0f),
};
std::default_random_engine rndGen(benchmark.active ? 0 : (unsigned)time(nullptr));
std::random_device rndDevice;
std::default_random_engine rndGen(benchmark.active ? 0 : rndDevice());
std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f);
std::uniform_int_distribution<uint32_t> rndCol(0, static_cast<uint32_t>(colors.size()-1));
std::uniform_real_distribution<float> rndCol(0.0f, 0.5f);
for (auto& light : uboLights.lights)
for (auto& light : lights)
{
light.position = glm::vec4(rndDist(rndGen) * 8.0f, 0.25f + std::abs(rndDist(rndGen)) * 4.0f, rndDist(rndGen) * 8.0f, 1.0f);
light.color = colors[rndCol(rndGen)];
//light.color = colors[rndCol(rndGen)];
light.color = glm::vec3(rndCol(rndGen), rndCol(rndGen), rndCol(rndGen)) * 2.0f;
light.radius = 1.0f + std::abs(rndDist(rndGen));
}
memcpy(uniformBuffers.lights.mapped, &uboLights, sizeof(uboLights));
memcpy(buffers.lights.mapped, lights.data(), lights.size() * sizeof(Light));
}
void draw()

View file

@ -1,50 +1,47 @@
#version 450
layout (input_attachment_index = 0, binding = 0) uniform subpassInput samplerposition;
layout (input_attachment_index = 1, binding = 1) uniform subpassInput samplerNormal;
layout (input_attachment_index = 2, binding = 2) uniform subpassInput samplerAlbedo;
layout (input_attachment_index = 0, binding = 0) uniform subpassInput inputPosition;
layout (input_attachment_index = 1, binding = 1) uniform subpassInput inputNormal;
layout (input_attachment_index = 2, binding = 2) uniform subpassInput inputAlbedo;
layout (location = 0) in vec2 inUV;
layout (location = 0) out vec4 outColor;
layout (constant_id = 0) const int NUM_LIGHTS = 64;
struct Light {
vec4 position;
vec3 color;
float radius;
};
layout (binding = 3) uniform UBO
layout (std140, binding = 3) buffer LightsBuffer
{
Light lights[NUM_LIGHTS];
} ubo;
Light lights[];
};
void main()
{
// Read G-Buffer values from previous sub pass
vec3 fragPos = subpassLoad(samplerposition).rgb;
vec3 normal = subpassLoad(samplerNormal).rgb;
vec4 albedo = subpassLoad(samplerAlbedo);
vec3 fragPos = subpassLoad(inputPosition).rgb;
vec3 normal = subpassLoad(inputNormal).rgb;
vec4 albedo = subpassLoad(inputAlbedo);
#define ambient 0.05
// Ambient part
vec3 fragcolor = albedo.rgb * ambient;
for(int i = 0; i < NUM_LIGHTS; ++i)
for(int i = 0; i < lights.length(); ++i)
{
vec3 L = ubo.lights[i].position.xyz - fragPos;
vec3 L = lights[i].position.xyz - fragPos;
float dist = length(L);
L = normalize(L);
float atten = ubo.lights[i].radius / (pow(dist, 3.0) + 1.0);
float atten = lights[i].radius / (pow(dist, 3.0) + 1.0);
vec3 N = normalize(normal);
float NdotL = max(0.0, dot(N, L));
vec3 diff = ubo.lights[i].color * albedo.rgb * NdotL * atten;
vec3 diff = lights[i].color * albedo.rgb * NdotL * atten;
fragcolor += diff;
}

View file

@ -1,11 +1,8 @@
// Copyright 2020 Google LLC
[[vk::input_attachment_index(0)]][[vk::binding(0)]] SubpassInput samplerposition;
[[vk::input_attachment_index(1)]][[vk::binding(1)]] SubpassInput samplerNormal;
[[vk::input_attachment_index(2)]][[vk::binding(2)]] SubpassInput samplerAlbedo;
#define MAX_NUM_LIGHTS 64
[[vk::constant_id(0)]] const int NUM_LIGHTS = 64;
[[vk::input_attachment_index(0)]][[vk::binding(0)]] SubpassInput inputPosition;
[[vk::input_attachment_index(1)]][[vk::binding(1)]] SubpassInput inputNormal;
[[vk::input_attachment_index(2)]][[vk::binding(2)]] SubpassInput inputAlbedo;
struct Light {
float4 position;
@ -13,56 +10,37 @@ struct Light {
float radius;
};
struct UBO
{
float4 viewPos;
Light lights[MAX_NUM_LIGHTS];
};
cbuffer ubo : register(b3) { UBO ubo; }
RWStructuredBuffer<Light> lights: register(u3);
float4 main([[vk::location(0)]] float2 inUV : TEXCOORD) : SV_TARGET
{
// Read G-Buffer values from previous sub pass
float3 fragPos = samplerposition.SubpassLoad().rgb;
float3 normal = samplerNormal.SubpassLoad().rgb;
float4 albedo = samplerAlbedo.SubpassLoad();
float3 fragPos = inputPosition.SubpassLoad().rgb;
float3 normal = inputNormal.SubpassLoad().rgb;
float4 albedo = inputAlbedo.SubpassLoad();
#define ambient 0.15
#define ambient 0.05
// Ambient part
float3 fragcolor = albedo.rgb * ambient;
for(int i = 0; i < NUM_LIGHTS; ++i)
uint lightsLength;
uint lightsStride;
lights.GetDimensions(lightsLength, lightsStride);
for(int i = 0; i < lightsLength; ++i)
{
// Vector to light
float3 L = ubo.lights[i].position.xyz - fragPos;
// Distance from light to fragment position
float3 L = lights[i].position.xyz - fragPos;
float dist = length(L);
// Viewer to fragment
float3 V = ubo.viewPos.xyz - fragPos;
V = normalize(V);
// Light to fragment
L = normalize(L);
// Attenuation
float atten = ubo.lights[i].radius / (pow(dist, 2.0) + 1.0);
// Diffuse part
float atten = lights[i].radius / (pow(dist, 3.0) + 1.0);
float3 N = normalize(normal);
float NdotL = max(0.0, dot(N, L));
float3 diff = ubo.lights[i].color * albedo.rgb * NdotL * atten;
float3 diff = lights[i].color * albedo.rgb * NdotL * atten;
// Specular part
// Specular map values are stored in alpha of albedo mrt
float3 R = reflect(-L, N);
float NdotR = max(0.0, dot(R, V));
//float3 spec = ubo.lights[i].color * albedo.a * pow(NdotR, 32.0) * atten;
fragcolor += diff;// + spec;
fragcolor += diff;
}
return float4(fragcolor, 1.0);