Use shader storage buffer to pass lights to shader

This commit is contained in:
Sascha Willems 2023-12-13 18:31:49 +01:00
parent a467d94159
commit 1a635f16ab
5 changed files with 53 additions and 95 deletions

View file

@ -21,8 +21,6 @@
#define ENABLE_VALIDATION false #define ENABLE_VALIDATION false
#define NUM_LIGHTS 64
class VulkanExample : public VulkanExampleBase class VulkanExample : public VulkanExampleBase
{ {
public: public:
@ -47,14 +45,12 @@ public:
float radius; float radius;
}; };
struct { std::array<Light, 64> lights;
Light lights[NUM_LIGHTS];
} uboLights;
struct { struct {
vks::Buffer GBuffer; vks::Buffer GBuffer;
vks::Buffer lights; vks::Buffer lights;
} uniformBuffers; } buffers;
struct { struct {
VkPipeline offscreen; VkPipeline offscreen;
@ -128,8 +124,8 @@ public:
clearAttachment(&attachments.albedo); clearAttachment(&attachments.albedo);
textures.glass.destroy(); textures.glass.destroy();
uniformBuffers.GBuffer.destroy(); buffers.GBuffer.destroy();
uniformBuffers.lights.destroy(); buffers.lights.destroy();
} }
// Enable physical device features required for this example // Enable physical device features required for this example
@ -526,6 +522,7 @@ public:
std::vector<VkDescriptorPoolSize> poolSizes = std::vector<VkDescriptorPoolSize> poolSizes =
{ {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 4), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 4),
}; };
@ -556,7 +553,7 @@ public:
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene)); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
writeDescriptorSets = { writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer // Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.GBuffer.descriptor) vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &buffers.GBuffer.descriptor)
}; };
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
} }
@ -617,7 +614,7 @@ public:
// Binding 2: Albedo input attachment // Binding 2: Albedo input attachment
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, VK_SHADER_STAGE_FRAGMENT_BIT, 2), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
// Binding 3: Light positions // Binding 3: Light positions
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 3),
}; };
VkDescriptorSetLayoutCreateInfo descriptorLayout = VkDescriptorSetLayoutCreateInfo descriptorLayout =
@ -648,7 +645,7 @@ public:
// Binding 2: Albedo texture target // Binding 2: Albedo texture target
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 2, &texDescriptorAlbedo), vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 2, &texDescriptorAlbedo),
// Binding 4: Fragment shader lights // Binding 4: Fragment shader lights
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3, &uniformBuffers.lights.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &buffers.lights.descriptor),
}; };
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
@ -668,22 +665,6 @@ public:
shaderStages[0] = loadShader(getShadersPath() + "subpasses/composition.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[0] = loadShader(getShadersPath() + "subpasses/composition.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "subpasses/composition.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); shaderStages[1] = loadShader(getShadersPath() + "subpasses/composition.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use specialization constants to pass number of lights to the shader
VkSpecializationMapEntry specializationEntry{};
specializationEntry.constantID = 0;
specializationEntry.offset = 0;
specializationEntry.size = sizeof(uint32_t);
uint32_t specializationData = NUM_LIGHTS;
VkSpecializationInfo specializationInfo;
specializationInfo.mapEntryCount = 1;
specializationInfo.pMapEntries = &specializationEntry;
specializationInfo.dataSize = sizeof(specializationData);
specializationInfo.pData = &specializationData;
shaderStages[1].pSpecializationInfo = &specializationInfo;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.composition, renderPass, 0); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.composition, renderPass, 0);
VkPipelineVertexInputStateCreateInfo emptyInputState{}; VkPipelineVertexInputStateCreateInfo emptyInputState{};
@ -727,7 +708,7 @@ public:
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.transparent)); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.transparent));
writeDescriptorSets = { writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.GBuffer.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &buffers.GBuffer.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, &texDescriptorPosition), vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, &texDescriptorPosition),
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.glass.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.glass.descriptor),
}; };
@ -755,13 +736,13 @@ public:
// Prepare and initialize uniform buffer containing shader uniforms // Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers() void prepareUniformBuffers()
{ {
// Deferred vertex shader // Matrices
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.GBuffer, sizeof(uboGBuffer)); vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffers.GBuffer, sizeof(uboGBuffer));
VK_CHECK_RESULT(uniformBuffers.GBuffer.map()); VK_CHECK_RESULT(buffers.GBuffer.map());
// Deferred fragment shader // Lights
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.lights, sizeof(uboLights)); vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffers.lights, lights.size() * sizeof(Light));
VK_CHECK_RESULT(uniformBuffers.lights.map()); VK_CHECK_RESULT(buffers.lights.map());
// Update // Update
updateUniformBufferDeferredMatrices(); updateUniformBufferDeferredMatrices();
@ -772,7 +753,7 @@ public:
uboGBuffer.projection = camera.matrices.perspective; uboGBuffer.projection = camera.matrices.perspective;
uboGBuffer.view = camera.matrices.view; uboGBuffer.view = camera.matrices.view;
uboGBuffer.model = glm::mat4(1.0f); uboGBuffer.model = glm::mat4(1.0f);
memcpy(uniformBuffers.GBuffer.mapped, &uboGBuffer, sizeof(uboGBuffer)); memcpy(buffers.GBuffer.mapped, &uboGBuffer, sizeof(uboGBuffer));
} }
void initLights() void initLights()
@ -786,18 +767,20 @@ public:
glm::vec3(1.0f, 1.0f, 0.0f), glm::vec3(1.0f, 1.0f, 0.0f),
}; };
std::default_random_engine rndGen(benchmark.active ? 0 : (unsigned)time(nullptr)); std::random_device rndDevice;
std::default_random_engine rndGen(benchmark.active ? 0 : rndDevice());
std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f); std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f);
std::uniform_int_distribution<uint32_t> rndCol(0, static_cast<uint32_t>(colors.size()-1)); std::uniform_real_distribution<float> rndCol(0.0f, 0.5f);
for (auto& light : uboLights.lights) for (auto& light : lights)
{ {
light.position = glm::vec4(rndDist(rndGen) * 8.0f, 0.25f + std::abs(rndDist(rndGen)) * 4.0f, rndDist(rndGen) * 8.0f, 1.0f); light.position = glm::vec4(rndDist(rndGen) * 8.0f, 0.25f + std::abs(rndDist(rndGen)) * 4.0f, rndDist(rndGen) * 8.0f, 1.0f);
light.color = colors[rndCol(rndGen)]; //light.color = colors[rndCol(rndGen)];
light.color = glm::vec3(rndCol(rndGen), rndCol(rndGen), rndCol(rndGen)) * 2.0f;
light.radius = 1.0f + std::abs(rndDist(rndGen)); light.radius = 1.0f + std::abs(rndDist(rndGen));
} }
memcpy(uniformBuffers.lights.mapped, &uboLights, sizeof(uboLights)); memcpy(buffers.lights.mapped, lights.data(), lights.size() * sizeof(Light));
} }
void draw() void draw()

View file

@ -1,50 +1,47 @@
#version 450 #version 450
layout (input_attachment_index = 0, binding = 0) uniform subpassInput samplerposition; layout (input_attachment_index = 0, binding = 0) uniform subpassInput inputPosition;
layout (input_attachment_index = 1, binding = 1) uniform subpassInput samplerNormal; layout (input_attachment_index = 1, binding = 1) uniform subpassInput inputNormal;
layout (input_attachment_index = 2, binding = 2) uniform subpassInput samplerAlbedo; layout (input_attachment_index = 2, binding = 2) uniform subpassInput inputAlbedo;
layout (location = 0) in vec2 inUV; layout (location = 0) in vec2 inUV;
layout (location = 0) out vec4 outColor; layout (location = 0) out vec4 outColor;
layout (constant_id = 0) const int NUM_LIGHTS = 64;
struct Light { struct Light {
vec4 position; vec4 position;
vec3 color; vec3 color;
float radius; float radius;
}; };
layout (binding = 3) uniform UBO layout (std140, binding = 3) buffer LightsBuffer
{ {
Light lights[NUM_LIGHTS]; Light lights[];
} ubo; };
void main() void main()
{ {
// Read G-Buffer values from previous sub pass // Read G-Buffer values from previous sub pass
vec3 fragPos = subpassLoad(samplerposition).rgb; vec3 fragPos = subpassLoad(inputPosition).rgb;
vec3 normal = subpassLoad(samplerNormal).rgb; vec3 normal = subpassLoad(inputNormal).rgb;
vec4 albedo = subpassLoad(samplerAlbedo); vec4 albedo = subpassLoad(inputAlbedo);
#define ambient 0.05 #define ambient 0.05
// Ambient part // Ambient part
vec3 fragcolor = albedo.rgb * ambient; vec3 fragcolor = albedo.rgb * ambient;
for(int i = 0; i < NUM_LIGHTS; ++i) for(int i = 0; i < lights.length(); ++i)
{ {
vec3 L = ubo.lights[i].position.xyz - fragPos; vec3 L = lights[i].position.xyz - fragPos;
float dist = length(L); float dist = length(L);
L = normalize(L); L = normalize(L);
float atten = ubo.lights[i].radius / (pow(dist, 3.0) + 1.0); float atten = lights[i].radius / (pow(dist, 3.0) + 1.0);
vec3 N = normalize(normal); vec3 N = normalize(normal);
float NdotL = max(0.0, dot(N, L)); float NdotL = max(0.0, dot(N, L));
vec3 diff = ubo.lights[i].color * albedo.rgb * NdotL * atten; vec3 diff = lights[i].color * albedo.rgb * NdotL * atten;
fragcolor += diff; fragcolor += diff;
} }

View file

@ -1,11 +1,8 @@
// Copyright 2020 Google LLC // Copyright 2020 Google LLC
[[vk::input_attachment_index(0)]][[vk::binding(0)]] SubpassInput samplerposition; [[vk::input_attachment_index(0)]][[vk::binding(0)]] SubpassInput inputPosition;
[[vk::input_attachment_index(1)]][[vk::binding(1)]] SubpassInput samplerNormal; [[vk::input_attachment_index(1)]][[vk::binding(1)]] SubpassInput inputNormal;
[[vk::input_attachment_index(2)]][[vk::binding(2)]] SubpassInput samplerAlbedo; [[vk::input_attachment_index(2)]][[vk::binding(2)]] SubpassInput inputAlbedo;
#define MAX_NUM_LIGHTS 64
[[vk::constant_id(0)]] const int NUM_LIGHTS = 64;
struct Light { struct Light {
float4 position; float4 position;
@ -13,56 +10,37 @@ struct Light {
float radius; float radius;
}; };
struct UBO RWStructuredBuffer<Light> lights: register(u3);
{
float4 viewPos;
Light lights[MAX_NUM_LIGHTS];
};
cbuffer ubo : register(b3) { UBO ubo; }
float4 main([[vk::location(0)]] float2 inUV : TEXCOORD) : SV_TARGET float4 main([[vk::location(0)]] float2 inUV : TEXCOORD) : SV_TARGET
{ {
// Read G-Buffer values from previous sub pass // Read G-Buffer values from previous sub pass
float3 fragPos = samplerposition.SubpassLoad().rgb; float3 fragPos = inputPosition.SubpassLoad().rgb;
float3 normal = samplerNormal.SubpassLoad().rgb; float3 normal = inputNormal.SubpassLoad().rgb;
float4 albedo = samplerAlbedo.SubpassLoad(); float4 albedo = inputAlbedo.SubpassLoad();
#define ambient 0.15 #define ambient 0.05
// Ambient part // Ambient part
float3 fragcolor = albedo.rgb * ambient; float3 fragcolor = albedo.rgb * ambient;
for(int i = 0; i < NUM_LIGHTS; ++i) uint lightsLength;
uint lightsStride;
lights.GetDimensions(lightsLength, lightsStride);
for(int i = 0; i < lightsLength; ++i)
{ {
// Vector to light float3 L = lights[i].position.xyz - fragPos;
float3 L = ubo.lights[i].position.xyz - fragPos;
// Distance from light to fragment position
float dist = length(L); float dist = length(L);
// Viewer to fragment
float3 V = ubo.viewPos.xyz - fragPos;
V = normalize(V);
// Light to fragment
L = normalize(L); L = normalize(L);
// Attenuation float atten = lights[i].radius / (pow(dist, 3.0) + 1.0);
float atten = ubo.lights[i].radius / (pow(dist, 2.0) + 1.0);
// Diffuse part
float3 N = normalize(normal); float3 N = normalize(normal);
float NdotL = max(0.0, dot(N, L)); float NdotL = max(0.0, dot(N, L));
float3 diff = ubo.lights[i].color * albedo.rgb * NdotL * atten; float3 diff = lights[i].color * albedo.rgb * NdotL * atten;
// Specular part fragcolor += diff;
// Specular map values are stored in alpha of albedo mrt
float3 R = reflect(-L, N);
float NdotR = max(0.0, dot(R, V));
//float3 spec = ubo.lights[i].color * albedo.a * pow(NdotR, 32.0) * atten;
fragcolor += diff;// + spec;
} }
return float4(fragcolor, 1.0); return float4(fragcolor, 1.0);