New dynamic rendering multi sampling example
Work-in-progress
This commit is contained in:
parent
a87dfde9cc
commit
1cd72f3d07
7 changed files with 594 additions and 0 deletions
|
|
@ -0,0 +1,407 @@
|
|||
/*
|
||||
* Vulkan Example - Using Multi sampling with VK_KHR_dynamic_rendering
|
||||
*
|
||||
* Copyright (C) 2025 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include "vulkanexamplebase.h"
|
||||
#include "VulkanglTFModel.h"
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR{ VK_NULL_HANDLE };
|
||||
PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR{ VK_NULL_HANDLE };
|
||||
|
||||
VkPhysicalDeviceDynamicRenderingFeaturesKHR enabledDynamicRenderingFeaturesKHR{};
|
||||
|
||||
vkglTF::Model model;
|
||||
|
||||
const VkSampleCountFlagBits multiSampleCount = VK_SAMPLE_COUNT_4_BIT;
|
||||
|
||||
struct UniformData {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 modelView;
|
||||
glm::vec4 viewPos;
|
||||
} uniformData;
|
||||
vks::Buffer uniformBuffer;
|
||||
|
||||
VkPipeline pipeline{ VK_NULL_HANDLE };
|
||||
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
||||
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
||||
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
||||
|
||||
// Intermediate images used for multi sampling
|
||||
struct RenderImage {
|
||||
VkImage image{ VK_NULL_HANDLE };
|
||||
VkImageView view{ VK_NULL_HANDLE };
|
||||
VkDeviceMemory memory{ VK_NULL_HANDLE };
|
||||
};
|
||||
std::vector<RenderImage> renderImages;
|
||||
RenderImage depthStencilRenderImage;
|
||||
|
||||
VulkanExample() : VulkanExampleBase()
|
||||
{
|
||||
title = "Multi sampling with dynamic rendering";
|
||||
camera.type = Camera::CameraType::lookat;
|
||||
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.0f));
|
||||
camera.setRotation(glm::vec3(-7.5f, 72.0f, 0.0f));
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
||||
settings.overlay = false;
|
||||
|
||||
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
|
||||
|
||||
// The sample uses the extension (instead of Vulkan 1.2, where dynamic rendering is core)
|
||||
enabledDeviceExtensions.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME);
|
||||
|
||||
// in addition to the extension, the feature needs to be explicitly enabled too by chaining the extension structure into device creation
|
||||
enabledDynamicRenderingFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR;
|
||||
enabledDynamicRenderingFeaturesKHR.dynamicRendering = VK_TRUE;
|
||||
|
||||
deviceCreatepNextChain = &enabledDynamicRenderingFeaturesKHR;
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
if (device) {
|
||||
vkDestroyPipeline(device, pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
uniformBuffer.destroy();
|
||||
for (auto i = 0; i < renderImages.size(); i++) {
|
||||
vkDestroyImage(device, renderImages[i].image, nullptr);
|
||||
vkDestroyImageView(device, renderImages[i].view, nullptr);
|
||||
vkFreeMemory(device, renderImages[i].memory, nullptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void setupRenderPass() override
|
||||
{
|
||||
// With VK_KHR_dynamic_rendering we no longer need a render pass, so we can skip the sample base render pass setup
|
||||
renderPass = VK_NULL_HANDLE;
|
||||
}
|
||||
|
||||
void setupFrameBuffer() override
|
||||
{
|
||||
// With VK_KHR_dynamic_rendering we no longer need a frame buffer, so we can so skip the sample base framebuffer setup
|
||||
// For multi sampling we need intermediate images that are then resolved to the final presentation image
|
||||
renderImages.resize(swapChain.images.size());
|
||||
for (auto i = 0; i < renderImages.size(); i++) {
|
||||
vkDestroyImage(device, renderImages[i].image, nullptr);
|
||||
vkDestroyImageView(device, renderImages[i].view, nullptr);
|
||||
vkFreeMemory(device, renderImages[i].memory, nullptr);
|
||||
VkImageCreateInfo renderImageCI = vks::initializers::imageCreateInfo();
|
||||
renderImageCI.imageType = VK_IMAGE_TYPE_2D;
|
||||
renderImageCI.format = swapChain.colorFormat;
|
||||
renderImageCI.extent = { width, height, 1 };
|
||||
renderImageCI.mipLevels = 1;
|
||||
renderImageCI.arrayLayers = 1;
|
||||
renderImageCI.samples = multiSampleCount;
|
||||
renderImageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
|
||||
renderImageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
||||
renderImageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
VK_CHECK_RESULT(vkCreateImage(device, &renderImageCI, nullptr, &renderImages[i].image));
|
||||
VkMemoryRequirements memReqs{};
|
||||
vkGetImageMemoryRequirements(device, renderImages[i].image, &memReqs);
|
||||
VkMemoryAllocateInfo memAllloc{};
|
||||
memAllloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
||||
memAllloc.allocationSize = memReqs.size;
|
||||
memAllloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllloc, nullptr, &renderImages[i].memory));
|
||||
VK_CHECK_RESULT(vkBindImageMemory(device, renderImages[i].image, renderImages[i].memory, 0));
|
||||
VkImageViewCreateInfo imageViewCI = vks::initializers::imageViewCreateInfo();
|
||||
imageViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
||||
imageViewCI.image = renderImages[i].image;
|
||||
imageViewCI.format = swapChain.colorFormat;
|
||||
imageViewCI.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
||||
VK_CHECK_RESULT(vkCreateImageView(device, &imageViewCI, nullptr, &renderImages[i].view));
|
||||
}
|
||||
}
|
||||
|
||||
// We need to override the default depth/stencil setup to create a depth image that supports multi sampling
|
||||
void setupDepthStencil() override
|
||||
{
|
||||
VkImageCreateInfo imageCI{};
|
||||
imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
|
||||
imageCI.imageType = VK_IMAGE_TYPE_2D;
|
||||
imageCI.format = depthFormat;
|
||||
imageCI.extent = { width, height, 1 };
|
||||
imageCI.mipLevels = 1;
|
||||
imageCI.arrayLayers = 1;
|
||||
imageCI.samples = multiSampleCount;
|
||||
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
|
||||
imageCI.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
|
||||
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &depthStencil.image));
|
||||
VkMemoryRequirements memReqs{};
|
||||
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
|
||||
VkMemoryAllocateInfo memAllloc{};
|
||||
memAllloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
||||
memAllloc.allocationSize = memReqs.size;
|
||||
memAllloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllloc, nullptr, &depthStencil.memory));
|
||||
VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.memory, 0));
|
||||
VkImageViewCreateInfo depthImageViewCI{};
|
||||
depthImageViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
||||
depthImageViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
||||
depthImageViewCI.image = depthStencil.image;
|
||||
depthImageViewCI.format = depthFormat;
|
||||
depthImageViewCI.subresourceRange.baseMipLevel = 0;
|
||||
depthImageViewCI.subresourceRange.levelCount = 1;
|
||||
depthImageViewCI.subresourceRange.baseArrayLayer = 0;
|
||||
depthImageViewCI.subresourceRange.layerCount = 1;
|
||||
depthImageViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
||||
// Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT
|
||||
if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) {
|
||||
depthImageViewCI.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
||||
}
|
||||
VK_CHECK_RESULT(vkCreateImageView(device, &depthImageViewCI, nullptr, &depthStencil.view));
|
||||
}
|
||||
|
||||
// Enable physical device features required for this example
|
||||
virtual void getEnabledFeatures()
|
||||
{
|
||||
// Enable anisotropic filtering if supported
|
||||
if (deviceFeatures.samplerAnisotropy) {
|
||||
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
||||
};
|
||||
}
|
||||
|
||||
void loadAssets()
|
||||
{
|
||||
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
|
||||
model.loadFromFile(getAssetPath() + "models/voyager.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
// With dynamic rendering there are no subpass dependencies, so we need to take care of proper layout transitions by using barriers
|
||||
// This set of barriers prepares the color and depth images for output
|
||||
vks::tools::insertImageMemoryBarrier(
|
||||
drawCmdBuffers[i],
|
||||
renderImages[i].image,
|
||||
0,
|
||||
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_GENERAL,
|
||||
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
||||
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
|
||||
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
|
||||
vks::tools::insertImageMemoryBarrier(
|
||||
drawCmdBuffers[i],
|
||||
depthStencil.image,
|
||||
0,
|
||||
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
|
||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
|
||||
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
|
||||
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
|
||||
VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 });
|
||||
|
||||
// New structures are used to define the attachments used in dynamic rendering
|
||||
VkRenderingAttachmentInfoKHR colorAttachment{};
|
||||
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
|
||||
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
||||
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||||
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
||||
colorAttachment.clearValue.color = { 0.0f,0.0f,0.0f,0.0f };
|
||||
// When multi sampling is used, we use intermediate images to render and resolve to the swap chain images
|
||||
colorAttachment.imageView = renderImages[i].view;
|
||||
colorAttachment.resolveMode = VK_RESOLVE_MODE_AVERAGE_BIT;
|
||||
colorAttachment.resolveImageView = swapChain.imageViews[i];
|
||||
colorAttachment.resolveImageLayout = VK_IMAGE_LAYOUT_GENERAL;
|
||||
|
||||
// A single depth stencil attachment info can be used, but they can also be specified separately.
|
||||
// When both are specified separately, the only requirement is that the image view is identical.
|
||||
VkRenderingAttachmentInfoKHR depthStencilAttachment{};
|
||||
depthStencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
|
||||
depthStencilAttachment.imageView = depthStencil.view;
|
||||
depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
||||
depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||||
depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
||||
depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderingInfoKHR renderingInfo{};
|
||||
renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR;
|
||||
renderingInfo.renderArea = { 0, 0, width, height };
|
||||
renderingInfo.layerCount = 1;
|
||||
renderingInfo.colorAttachmentCount = 1;
|
||||
renderingInfo.pColorAttachments = &colorAttachment;
|
||||
renderingInfo.pDepthAttachment = &depthStencilAttachment;
|
||||
renderingInfo.pStencilAttachment = &depthStencilAttachment;
|
||||
|
||||
// Begin dynamic rendering
|
||||
vkCmdBeginRenderingKHR(drawCmdBuffers[i], &renderingInfo);
|
||||
|
||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
||||
|
||||
model.draw(drawCmdBuffers[i], vkglTF::RenderFlags::BindImages, pipelineLayout);
|
||||
|
||||
drawUI(drawCmdBuffers[i]);
|
||||
|
||||
// End dynamic rendering
|
||||
vkCmdEndRenderingKHR(drawCmdBuffers[i]);
|
||||
|
||||
// This set of barriers prepares the color image for presentation, we don't need to care for the depth image
|
||||
vks::tools::insertImageMemoryBarrier(
|
||||
drawCmdBuffers[i],
|
||||
swapChain.images[i],
|
||||
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
||||
0,
|
||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
||||
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
|
||||
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
||||
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void setupDescriptors()
|
||||
{
|
||||
// Pool
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
||||
};
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||
// Layout
|
||||
const std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
||||
};
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
||||
// Set
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
|
||||
};
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
// Layout
|
||||
// Uses set 0 for passing vertex shader ubo and set 1 for fragment shader images (taken from glTF model)
|
||||
const std::vector<VkDescriptorSetLayout> setLayouts = {
|
||||
descriptorSetLayout,
|
||||
vkglTF::descriptorSetLayoutImage,
|
||||
};
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), 2);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
||||
|
||||
// Pipeline
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(multiSampleCount, 0);
|
||||
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages{};
|
||||
|
||||
// We no longer need to set a renderpass for the pipeline create info
|
||||
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo();
|
||||
pipelineCI.layout = pipelineLayout;
|
||||
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCI.pRasterizationState = &rasterizationState;
|
||||
pipelineCI.pColorBlendState = &colorBlendState;
|
||||
pipelineCI.pMultisampleState = &multisampleState;
|
||||
pipelineCI.pViewportState = &viewportState;
|
||||
pipelineCI.pDepthStencilState = &depthStencilState;
|
||||
pipelineCI.pDynamicState = &dynamicState;
|
||||
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCI.pStages = shaderStages.data();
|
||||
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV });
|
||||
|
||||
// New create info to define color, depth and stencil attachments at pipeline create time
|
||||
VkPipelineRenderingCreateInfoKHR pipelineRenderingCreateInfo{};
|
||||
pipelineRenderingCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR;
|
||||
pipelineRenderingCreateInfo.colorAttachmentCount = 1;
|
||||
pipelineRenderingCreateInfo.pColorAttachmentFormats = &swapChain.colorFormat;
|
||||
pipelineRenderingCreateInfo.depthAttachmentFormat = depthFormat;
|
||||
pipelineRenderingCreateInfo.stencilAttachmentFormat = depthFormat;
|
||||
// Chain into the pipeline creat einfo
|
||||
pipelineCI.pNext = &pipelineRenderingCreateInfo;
|
||||
|
||||
shaderStages[0] = loadShader(getShadersPath() + "dynamicrendering/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getShadersPath() + "dynamicrendering/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
||||
}
|
||||
|
||||
// Prepare and initialize uniform buffer containing shader uniforms
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData));
|
||||
VK_CHECK_RESULT(uniformBuffer.map());
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
uniformData.projection = camera.matrices.perspective;
|
||||
uniformData.modelView = camera.matrices.view;
|
||||
uniformData.viewPos = camera.viewPos;
|
||||
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
|
||||
// Since we use an extension, we need to expliclity load the function pointers for extension related Vulkan commands
|
||||
vkCmdBeginRenderingKHR = reinterpret_cast<PFN_vkCmdBeginRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdBeginRenderingKHR"));
|
||||
vkCmdEndRenderingKHR = reinterpret_cast<PFN_vkCmdEndRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdEndRenderingKHR"));
|
||||
|
||||
loadAssets();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptors();
|
||||
preparePipelines();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VulkanExampleBase::prepareFrame();
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
updateUniformBuffers();
|
||||
draw();
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue