Split device class into header and implementation
Moved include to base class
This commit is contained in:
parent
122288fe25
commit
231e97b8c0
20 changed files with 641 additions and 621 deletions
562
base/VulkanDevice.cpp
Normal file
562
base/VulkanDevice.cpp
Normal file
|
|
@ -0,0 +1,562 @@
|
|||
/*
|
||||
* Vulkan device class
|
||||
*
|
||||
* Encapsulates a physical Vulkan device and its logical representation
|
||||
*
|
||||
* Copyright (C) by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <VulkanDevice.h>
|
||||
|
||||
namespace vks
|
||||
{
|
||||
/**
|
||||
* Default constructor
|
||||
*
|
||||
* @param physicalDevice Physical device that is to be used
|
||||
*/
|
||||
VulkanDevice::VulkanDevice(VkPhysicalDevice physicalDevice)
|
||||
{
|
||||
assert(physicalDevice);
|
||||
this->physicalDevice = physicalDevice;
|
||||
|
||||
// Store Properties features, limits and properties of the physical device for later use
|
||||
// Device properties also contain limits and sparse properties
|
||||
vkGetPhysicalDeviceProperties(physicalDevice, &properties);
|
||||
// Features should be checked by the examples before using them
|
||||
vkGetPhysicalDeviceFeatures(physicalDevice, &features);
|
||||
// Memory properties are used regularly for creating all kinds of buffers
|
||||
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties);
|
||||
// Queue family properties, used for setting up requested queues upon device creation
|
||||
uint32_t queueFamilyCount;
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
|
||||
assert(queueFamilyCount > 0);
|
||||
queueFamilyProperties.resize(queueFamilyCount);
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilyProperties.data());
|
||||
|
||||
// Get list of supported extensions
|
||||
uint32_t extCount = 0;
|
||||
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extCount, nullptr);
|
||||
if (extCount > 0)
|
||||
{
|
||||
std::vector<VkExtensionProperties> extensions(extCount);
|
||||
if (vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extCount, &extensions.front()) == VK_SUCCESS)
|
||||
{
|
||||
for (auto ext : extensions)
|
||||
{
|
||||
supportedExtensions.push_back(ext.extensionName);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Default destructor
|
||||
*
|
||||
* @note Frees the logical device
|
||||
*/
|
||||
VulkanDevice::~VulkanDevice()
|
||||
{
|
||||
if (commandPool)
|
||||
{
|
||||
vkDestroyCommandPool(logicalDevice, commandPool, nullptr);
|
||||
}
|
||||
if (logicalDevice)
|
||||
{
|
||||
vkDestroyDevice(logicalDevice, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the index of a memory type that has all the requested property bits set
|
||||
*
|
||||
* @param typeBits Bit mask with bits set for each memory type supported by the resource to request for (from VkMemoryRequirements)
|
||||
* @param properties Bit mask of properties for the memory type to request
|
||||
* @param (Optional) memTypeFound Pointer to a bool that is set to true if a matching memory type has been found
|
||||
*
|
||||
* @return Index of the requested memory type
|
||||
*
|
||||
* @throw Throws an exception if memTypeFound is null and no memory type could be found that supports the requested properties
|
||||
*/
|
||||
uint32_t VulkanDevice::getMemoryType(uint32_t typeBits, VkMemoryPropertyFlags properties, VkBool32 *memTypeFound) const
|
||||
{
|
||||
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++)
|
||||
{
|
||||
if ((typeBits & 1) == 1)
|
||||
{
|
||||
if ((memoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
|
||||
{
|
||||
if (memTypeFound)
|
||||
{
|
||||
*memTypeFound = true;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
}
|
||||
typeBits >>= 1;
|
||||
}
|
||||
|
||||
if (memTypeFound)
|
||||
{
|
||||
*memTypeFound = false;
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::runtime_error("Could not find a matching memory type");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the index of a queue family that supports the requested queue flags
|
||||
*
|
||||
* @param queueFlags Queue flags to find a queue family index for
|
||||
*
|
||||
* @return Index of the queue family index that matches the flags
|
||||
*
|
||||
* @throw Throws an exception if no queue family index could be found that supports the requested flags
|
||||
*/
|
||||
uint32_t VulkanDevice::getQueueFamilyIndex(VkQueueFlagBits queueFlags) const
|
||||
{
|
||||
// Dedicated queue for compute
|
||||
// Try to find a queue family index that supports compute but not graphics
|
||||
if (queueFlags & VK_QUEUE_COMPUTE_BIT)
|
||||
{
|
||||
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++)
|
||||
{
|
||||
if ((queueFamilyProperties[i].queueFlags & queueFlags) && ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) == 0))
|
||||
{
|
||||
return i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dedicated queue for transfer
|
||||
// Try to find a queue family index that supports transfer but not graphics and compute
|
||||
if (queueFlags & VK_QUEUE_TRANSFER_BIT)
|
||||
{
|
||||
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++)
|
||||
{
|
||||
if ((queueFamilyProperties[i].queueFlags & queueFlags) && ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) == 0) && ((queueFamilyProperties[i].queueFlags & VK_QUEUE_COMPUTE_BIT) == 0))
|
||||
{
|
||||
return i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For other queue types or if no separate compute queue is present, return the first one to support the requested flags
|
||||
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++)
|
||||
{
|
||||
if (queueFamilyProperties[i].queueFlags & queueFlags)
|
||||
{
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
throw std::runtime_error("Could not find a matching queue family index");
|
||||
}
|
||||
|
||||
/**
|
||||
* Create the logical device based on the assigned physical device, also gets default queue family indices
|
||||
*
|
||||
* @param enabledFeatures Can be used to enable certain features upon device creation
|
||||
* @param pNextChain Optional chain of pointer to extension structures
|
||||
* @param useSwapChain Set to false for headless rendering to omit the swapchain device extensions
|
||||
* @param requestedQueueTypes Bit flags specifying the queue types to be requested from the device
|
||||
*
|
||||
* @return VkResult of the device creation call
|
||||
*/
|
||||
VkResult VulkanDevice::createLogicalDevice(VkPhysicalDeviceFeatures enabledFeatures, std::vector<const char*> enabledExtensions, void* pNextChain, bool useSwapChain, VkQueueFlags requestedQueueTypes)
|
||||
{
|
||||
// Desired queues need to be requested upon logical device creation
|
||||
// Due to differing queue family configurations of Vulkan implementations this can be a bit tricky, especially if the application
|
||||
// requests different queue types
|
||||
|
||||
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos{};
|
||||
|
||||
// Get queue family indices for the requested queue family types
|
||||
// Note that the indices may overlap depending on the implementation
|
||||
|
||||
const float defaultQueuePriority(0.0f);
|
||||
|
||||
// Graphics queue
|
||||
if (requestedQueueTypes & VK_QUEUE_GRAPHICS_BIT)
|
||||
{
|
||||
queueFamilyIndices.graphics = getQueueFamilyIndex(VK_QUEUE_GRAPHICS_BIT);
|
||||
VkDeviceQueueCreateInfo queueInfo{};
|
||||
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||||
queueInfo.queueFamilyIndex = queueFamilyIndices.graphics;
|
||||
queueInfo.queueCount = 1;
|
||||
queueInfo.pQueuePriorities = &defaultQueuePriority;
|
||||
queueCreateInfos.push_back(queueInfo);
|
||||
}
|
||||
else
|
||||
{
|
||||
queueFamilyIndices.graphics = VK_NULL_HANDLE;
|
||||
}
|
||||
|
||||
// Dedicated compute queue
|
||||
if (requestedQueueTypes & VK_QUEUE_COMPUTE_BIT)
|
||||
{
|
||||
queueFamilyIndices.compute = getQueueFamilyIndex(VK_QUEUE_COMPUTE_BIT);
|
||||
if (queueFamilyIndices.compute != queueFamilyIndices.graphics)
|
||||
{
|
||||
// If compute family index differs, we need an additional queue create info for the compute queue
|
||||
VkDeviceQueueCreateInfo queueInfo{};
|
||||
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||||
queueInfo.queueFamilyIndex = queueFamilyIndices.compute;
|
||||
queueInfo.queueCount = 1;
|
||||
queueInfo.pQueuePriorities = &defaultQueuePriority;
|
||||
queueCreateInfos.push_back(queueInfo);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Else we use the same queue
|
||||
queueFamilyIndices.compute = queueFamilyIndices.graphics;
|
||||
}
|
||||
|
||||
// Dedicated transfer queue
|
||||
if (requestedQueueTypes & VK_QUEUE_TRANSFER_BIT)
|
||||
{
|
||||
queueFamilyIndices.transfer = getQueueFamilyIndex(VK_QUEUE_TRANSFER_BIT);
|
||||
if ((queueFamilyIndices.transfer != queueFamilyIndices.graphics) && (queueFamilyIndices.transfer != queueFamilyIndices.compute))
|
||||
{
|
||||
// If compute family index differs, we need an additional queue create info for the compute queue
|
||||
VkDeviceQueueCreateInfo queueInfo{};
|
||||
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||||
queueInfo.queueFamilyIndex = queueFamilyIndices.transfer;
|
||||
queueInfo.queueCount = 1;
|
||||
queueInfo.pQueuePriorities = &defaultQueuePriority;
|
||||
queueCreateInfos.push_back(queueInfo);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Else we use the same queue
|
||||
queueFamilyIndices.transfer = queueFamilyIndices.graphics;
|
||||
}
|
||||
|
||||
// Create the logical device representation
|
||||
std::vector<const char*> deviceExtensions(enabledExtensions);
|
||||
if (useSwapChain)
|
||||
{
|
||||
// If the device will be used for presenting to a display via a swapchain we need to request the swapchain extension
|
||||
deviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
|
||||
}
|
||||
|
||||
VkDeviceCreateInfo deviceCreateInfo = {};
|
||||
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
||||
deviceCreateInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());;
|
||||
deviceCreateInfo.pQueueCreateInfos = queueCreateInfos.data();
|
||||
deviceCreateInfo.pEnabledFeatures = &enabledFeatures;
|
||||
|
||||
// If a pNext(Chain) has been passed, we need to add it to the device creation info
|
||||
VkPhysicalDeviceFeatures2 physicalDeviceFeatures2{};
|
||||
if (pNextChain) {
|
||||
physicalDeviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
|
||||
physicalDeviceFeatures2.features = enabledFeatures;
|
||||
physicalDeviceFeatures2.pNext = pNextChain;
|
||||
deviceCreateInfo.pEnabledFeatures = nullptr;
|
||||
deviceCreateInfo.pNext = &physicalDeviceFeatures2;
|
||||
}
|
||||
|
||||
// Enable the debug marker extension if it is present (likely meaning a debugging tool is present)
|
||||
if (extensionSupported(VK_EXT_DEBUG_MARKER_EXTENSION_NAME))
|
||||
{
|
||||
deviceExtensions.push_back(VK_EXT_DEBUG_MARKER_EXTENSION_NAME);
|
||||
enableDebugMarkers = true;
|
||||
}
|
||||
|
||||
if (deviceExtensions.size() > 0)
|
||||
{
|
||||
deviceCreateInfo.enabledExtensionCount = (uint32_t)deviceExtensions.size();
|
||||
deviceCreateInfo.ppEnabledExtensionNames = deviceExtensions.data();
|
||||
}
|
||||
|
||||
VkResult result = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &logicalDevice);
|
||||
|
||||
if (result == VK_SUCCESS)
|
||||
{
|
||||
// Create a default command pool for graphics command buffers
|
||||
commandPool = createCommandPool(queueFamilyIndices.graphics);
|
||||
}
|
||||
|
||||
this->enabledFeatures = enabledFeatures;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a buffer on the device
|
||||
*
|
||||
* @param usageFlags Usage flag bit mask for the buffer (i.e. index, vertex, uniform buffer)
|
||||
* @param memoryPropertyFlags Memory properties for this buffer (i.e. device local, host visible, coherent)
|
||||
* @param size Size of the buffer in byes
|
||||
* @param buffer Pointer to the buffer handle acquired by the function
|
||||
* @param memory Pointer to the memory handle acquired by the function
|
||||
* @param data Pointer to the data that should be copied to the buffer after creation (optional, if not set, no data is copied over)
|
||||
*
|
||||
* @return VK_SUCCESS if buffer handle and memory have been created and (optionally passed) data has been copied
|
||||
*/
|
||||
VkResult VulkanDevice::createBuffer(VkBufferUsageFlags usageFlags, VkMemoryPropertyFlags memoryPropertyFlags, VkDeviceSize size, VkBuffer *buffer, VkDeviceMemory *memory, void *data)
|
||||
{
|
||||
// Create the buffer handle
|
||||
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(usageFlags, size);
|
||||
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
VK_CHECK_RESULT(vkCreateBuffer(logicalDevice, &bufferCreateInfo, nullptr, buffer));
|
||||
|
||||
// Create the memory backing up the buffer handle
|
||||
VkMemoryRequirements memReqs;
|
||||
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
||||
vkGetBufferMemoryRequirements(logicalDevice, *buffer, &memReqs);
|
||||
memAlloc.allocationSize = memReqs.size;
|
||||
// Find a memory type index that fits the properties of the buffer
|
||||
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, memoryPropertyFlags);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(logicalDevice, &memAlloc, nullptr, memory));
|
||||
|
||||
// If a pointer to the buffer data has been passed, map the buffer and copy over the data
|
||||
if (data != nullptr)
|
||||
{
|
||||
void *mapped;
|
||||
VK_CHECK_RESULT(vkMapMemory(logicalDevice, *memory, 0, size, 0, &mapped));
|
||||
memcpy(mapped, data, size);
|
||||
// If host coherency hasn't been requested, do a manual flush to make writes visible
|
||||
if ((memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
|
||||
{
|
||||
VkMappedMemoryRange mappedRange = vks::initializers::mappedMemoryRange();
|
||||
mappedRange.memory = *memory;
|
||||
mappedRange.offset = 0;
|
||||
mappedRange.size = size;
|
||||
vkFlushMappedMemoryRanges(logicalDevice, 1, &mappedRange);
|
||||
}
|
||||
vkUnmapMemory(logicalDevice, *memory);
|
||||
}
|
||||
|
||||
// Attach the memory to the buffer object
|
||||
VK_CHECK_RESULT(vkBindBufferMemory(logicalDevice, *buffer, *memory, 0));
|
||||
|
||||
return VK_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a buffer on the device
|
||||
*
|
||||
* @param usageFlags Usage flag bit mask for the buffer (i.e. index, vertex, uniform buffer)
|
||||
* @param memoryPropertyFlags Memory properties for this buffer (i.e. device local, host visible, coherent)
|
||||
* @param buffer Pointer to a vk::Vulkan buffer object
|
||||
* @param size Size of the buffer in byes
|
||||
* @param data Pointer to the data that should be copied to the buffer after creation (optional, if not set, no data is copied over)
|
||||
*
|
||||
* @return VK_SUCCESS if buffer handle and memory have been created and (optionally passed) data has been copied
|
||||
*/
|
||||
VkResult VulkanDevice::createBuffer(VkBufferUsageFlags usageFlags, VkMemoryPropertyFlags memoryPropertyFlags, vks::Buffer *buffer, VkDeviceSize size, void *data)
|
||||
{
|
||||
buffer->device = logicalDevice;
|
||||
|
||||
// Create the buffer handle
|
||||
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(usageFlags, size);
|
||||
VK_CHECK_RESULT(vkCreateBuffer(logicalDevice, &bufferCreateInfo, nullptr, &buffer->buffer));
|
||||
|
||||
// Create the memory backing up the buffer handle
|
||||
VkMemoryRequirements memReqs;
|
||||
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
||||
vkGetBufferMemoryRequirements(logicalDevice, buffer->buffer, &memReqs);
|
||||
memAlloc.allocationSize = memReqs.size;
|
||||
// Find a memory type index that fits the properties of the buffer
|
||||
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, memoryPropertyFlags);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(logicalDevice, &memAlloc, nullptr, &buffer->memory));
|
||||
|
||||
buffer->alignment = memReqs.alignment;
|
||||
buffer->size = size;
|
||||
buffer->usageFlags = usageFlags;
|
||||
buffer->memoryPropertyFlags = memoryPropertyFlags;
|
||||
|
||||
// If a pointer to the buffer data has been passed, map the buffer and copy over the data
|
||||
if (data != nullptr)
|
||||
{
|
||||
VK_CHECK_RESULT(buffer->map());
|
||||
memcpy(buffer->mapped, data, size);
|
||||
if ((memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
|
||||
buffer->flush();
|
||||
|
||||
buffer->unmap();
|
||||
}
|
||||
|
||||
// Initialize a default descriptor that covers the whole buffer size
|
||||
buffer->setupDescriptor();
|
||||
|
||||
// Attach the memory to the buffer object
|
||||
return buffer->bind();
|
||||
}
|
||||
|
||||
/**
|
||||
* Copy buffer data from src to dst using VkCmdCopyBuffer
|
||||
*
|
||||
* @param src Pointer to the source buffer to copy from
|
||||
* @param dst Pointer to the destination buffer to copy to
|
||||
* @param queue Pointer
|
||||
* @param copyRegion (Optional) Pointer to a copy region, if NULL, the whole buffer is copied
|
||||
*
|
||||
* @note Source and destination pointers must have the appropriate transfer usage flags set (TRANSFER_SRC / TRANSFER_DST)
|
||||
*/
|
||||
void VulkanDevice::copyBuffer(vks::Buffer *src, vks::Buffer *dst, VkQueue queue, VkBufferCopy *copyRegion)
|
||||
{
|
||||
assert(dst->size <= src->size);
|
||||
assert(src->buffer);
|
||||
VkCommandBuffer copyCmd = createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
VkBufferCopy bufferCopy{};
|
||||
if (copyRegion == nullptr)
|
||||
{
|
||||
bufferCopy.size = src->size;
|
||||
}
|
||||
else
|
||||
{
|
||||
bufferCopy = *copyRegion;
|
||||
}
|
||||
|
||||
vkCmdCopyBuffer(copyCmd, src->buffer, dst->buffer, 1, &bufferCopy);
|
||||
|
||||
flushCommandBuffer(copyCmd, queue);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a command pool for allocation command buffers from
|
||||
*
|
||||
* @param queueFamilyIndex Family index of the queue to create the command pool for
|
||||
* @param createFlags (Optional) Command pool creation flags (Defaults to VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT)
|
||||
*
|
||||
* @note Command buffers allocated from the created pool can only be submitted to a queue with the same family index
|
||||
*
|
||||
* @return A handle to the created command buffer
|
||||
*/
|
||||
VkCommandPool VulkanDevice::createCommandPool(uint32_t queueFamilyIndex, VkCommandPoolCreateFlags createFlags)
|
||||
{
|
||||
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
||||
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
||||
cmdPoolInfo.queueFamilyIndex = queueFamilyIndex;
|
||||
cmdPoolInfo.flags = createFlags;
|
||||
VkCommandPool cmdPool;
|
||||
VK_CHECK_RESULT(vkCreateCommandPool(logicalDevice, &cmdPoolInfo, nullptr, &cmdPool));
|
||||
return cmdPool;
|
||||
}
|
||||
|
||||
/**
|
||||
* Allocate a command buffer from the command pool
|
||||
*
|
||||
* @param level Level of the new command buffer (primary or secondary)
|
||||
* @param pool Command pool from which the command buffer will be allocated
|
||||
* @param (Optional) begin If true, recording on the new command buffer will be started (vkBeginCommandBuffer) (Defaults to false)
|
||||
*
|
||||
* @return A handle to the allocated command buffer
|
||||
*/
|
||||
VkCommandBuffer VulkanDevice::createCommandBuffer(VkCommandBufferLevel level, VkCommandPool pool, bool begin)
|
||||
{
|
||||
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(pool, level, 1);
|
||||
VkCommandBuffer cmdBuffer;
|
||||
VK_CHECK_RESULT(vkAllocateCommandBuffers(logicalDevice, &cmdBufAllocateInfo, &cmdBuffer));
|
||||
// If requested, also start recording for the new command buffer
|
||||
if (begin)
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo));
|
||||
}
|
||||
return cmdBuffer;
|
||||
}
|
||||
|
||||
VkCommandBuffer VulkanDevice::createCommandBuffer(VkCommandBufferLevel level, bool begin)
|
||||
{
|
||||
return createCommandBuffer(level, commandPool, begin);
|
||||
}
|
||||
|
||||
/**
|
||||
* Finish command buffer recording and submit it to a queue
|
||||
*
|
||||
* @param commandBuffer Command buffer to flush
|
||||
* @param queue Queue to submit the command buffer to
|
||||
* @param pool Command pool on which the command buffer has been created
|
||||
* @param free (Optional) Free the command buffer once it has been submitted (Defaults to true)
|
||||
*
|
||||
* @note The queue that the command buffer is submitted to must be from the same family index as the pool it was allocated from
|
||||
* @note Uses a fence to ensure command buffer has finished executing
|
||||
*/
|
||||
void VulkanDevice::flushCommandBuffer(VkCommandBuffer commandBuffer, VkQueue queue, VkCommandPool pool, bool free)
|
||||
{
|
||||
if (commandBuffer == VK_NULL_HANDLE)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
|
||||
|
||||
VkSubmitInfo submitInfo = vks::initializers::submitInfo();
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &commandBuffer;
|
||||
// Create fence to ensure that the command buffer has finished executing
|
||||
VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE);
|
||||
VkFence fence;
|
||||
VK_CHECK_RESULT(vkCreateFence(logicalDevice, &fenceInfo, nullptr, &fence));
|
||||
// Submit to the queue
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence));
|
||||
// Wait for the fence to signal that command buffer has finished executing
|
||||
VK_CHECK_RESULT(vkWaitForFences(logicalDevice, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
|
||||
vkDestroyFence(logicalDevice, fence, nullptr);
|
||||
if (free)
|
||||
{
|
||||
vkFreeCommandBuffers(logicalDevice, pool, 1, &commandBuffer);
|
||||
}
|
||||
}
|
||||
|
||||
void VulkanDevice::flushCommandBuffer(VkCommandBuffer commandBuffer, VkQueue queue, bool free)
|
||||
{
|
||||
return flushCommandBuffer(commandBuffer, queue, commandPool, free);
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if an extension is supported by the (physical device)
|
||||
*
|
||||
* @param extension Name of the extension to check
|
||||
*
|
||||
* @return True if the extension is supported (present in the list read at device creation time)
|
||||
*/
|
||||
bool VulkanDevice::extensionSupported(std::string extension)
|
||||
{
|
||||
return (std::find(supportedExtensions.begin(), supportedExtensions.end(), extension) != supportedExtensions.end());
|
||||
}
|
||||
|
||||
/**
|
||||
* Select the best-fit depth format for this device from a list of possible depth (and stencil) formats
|
||||
*
|
||||
* @param checkSamplingSupport Check if the format can be sampled from (e.g. for shader reads)
|
||||
*
|
||||
* @return The depth format that best fits for the current device
|
||||
*
|
||||
* @throw Throws an exception if no depth format fits the requirements
|
||||
*/
|
||||
VkFormat VulkanDevice::getSupportedDepthFormat(bool checkSamplingSupport)
|
||||
{
|
||||
// All depth formats may be optional, so we need to find a suitable depth format to use
|
||||
std::vector<VkFormat> depthFormats = { VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_D16_UNORM_S8_UINT, VK_FORMAT_D16_UNORM };
|
||||
for (auto& format : depthFormats)
|
||||
{
|
||||
VkFormatProperties formatProperties;
|
||||
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
||||
// Format must support depth stencil attachment for optimal tiling
|
||||
if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)
|
||||
{
|
||||
if (checkSamplingSupport) {
|
||||
if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
return format;
|
||||
}
|
||||
}
|
||||
throw std::runtime_error("Could not find a matching depth format");
|
||||
}
|
||||
|
||||
};
|
||||
Loading…
Add table
Add a link
Reference in a new issue