Check for image feature support

Code cleanup
Comments
This commit is contained in:
Sascha Willems 2024-06-21 11:28:22 +02:00
parent fd7f93b0a7
commit 2e1abd1c54

View file

@ -2,15 +2,14 @@
* Vulkan Example - Host image copy using VK_EXT_host_image_copy
*
* This sample shows how to use host image copies to directly upload an image to the devic without having to use staging
*
* Work-in-progress
*
* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#include <ktx.h>
#include <ktxvulkan.h>
@ -20,16 +19,11 @@ public:
// Pointers for functions added by the host image copy extension;
PFN_vkCopyMemoryToImageEXT vkCopyMemoryToImageEXT{ nullptr };
PFN_vkTransitionImageLayoutEXT vkTransitionImageLayoutEXT{ nullptr };
// Used to check feature image format support for host image copies
PFN_vkGetPhysicalDeviceFormatProperties2 vkGetPhysicalDeviceFormatProperties2{ nullptr };
VkPhysicalDeviceHostImageCopyFeaturesEXT enabledPhysicalDeviceHostImageCopyFeaturesEXT{};
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
float normal[3];
};
// Contains all Vulkan objects that are required to store and use a texture
struct Texture {
VkSampler sampler{ VK_NULL_HANDLE };
@ -41,9 +35,7 @@ public:
uint32_t mipLevels{ 0 };
} texture;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount{ 0 };
vkglTF::Model plane;
struct UniformData {
glm::mat4 projection;
@ -62,7 +54,7 @@ public:
{
title = "Host image copy";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
camera.setPosition(glm::vec3(0.0f, 0.0f, -1.5f));
camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
@ -85,8 +77,6 @@ public:
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBuffer.destroy();
}
}
@ -146,10 +136,28 @@ public:
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
const VkFormat imageFormat = VK_FORMAT_R8G8B8A8_UNORM;
// Check if the image format supports the host image copy flag
// Note: All formats that support sampling are required to support this flag
// So for the format used here (R8G8B8A8_UNORM) we could skip this check
// The flag we need to check is an extension flag, so we need to go through VkFormatProperties3
VkFormatProperties3 formatProperties3{};
formatProperties3.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3_KHR;
// Properties3 need to be chained into Properties2
VkFormatProperties2 formatProperties2{};
formatProperties2.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2;
formatProperties2.pNext = &formatProperties3;
vkGetPhysicalDeviceFormatProperties2(physicalDevice, imageFormat, &formatProperties2);
if ((formatProperties3.optimalTilingFeatures & VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT) == 0) {
vks::tools::exitFatal("The selected image format does not support the required host transfer bit.", -1);
}
// Create optimal tiled target image on the device
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageCreateInfo.format = imageFormat;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
@ -248,7 +256,7 @@ public:
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = VK_FORMAT_R8G8B8A8_UNORM;
view.format = imageFormat;
view.subresourceRange = subresourceRange;
view.image = texture.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
@ -298,11 +306,7 @@ public:
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
plane.draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
@ -312,46 +316,6 @@ public:
}
}
// Creates a vertex and index buffer for a quad made of two triangles
// This is used to display the texture on
void generateQuad()
{
// Setup vertices for a single uv-mapped quad made from two triangles
std::vector<Vertex> vertices =
{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers and upload data to the GPU
struct StagingBuffers {
vks::Buffer vertices;
vks::Buffer indices;
} stagingBuffers;
// Host visible source buffers (staging)
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data()));
// Device local destination buffers
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t)));
// Copy from host do device
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue);
vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue);
// Clean up
stagingBuffers.vertices.destroy();
stagingBuffers.indices.destroy();
}
void setupDescriptors()
{
// Pool
@ -413,23 +377,7 @@ public:
shaderStages[0] = loadShader(getShadersPath() + "texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Vertex input state
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX)
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)),
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &vertexInputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
@ -439,6 +387,7 @@ public:
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal });
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
@ -458,6 +407,12 @@ public:
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
plane.loadFromFile(getAssetPath() + "models/plane_z.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void prepare()
{
VulkanExampleBase::prepare();
@ -465,9 +420,10 @@ public:
// Get the function pointers required host image copies
vkCopyMemoryToImageEXT = reinterpret_cast<PFN_vkCopyMemoryToImageEXT>(vkGetDeviceProcAddr(device, "vkCopyMemoryToImageEXT"));
vkTransitionImageLayoutEXT = reinterpret_cast<PFN_vkTransitionImageLayoutEXT>(vkGetDeviceProcAddr(device, "vkTransitionImageLayoutEXT"));
vkGetPhysicalDeviceFormatProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2"));
loadAssets();
loadTexture();
generateQuad();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();