Removed incomplete example

This commit is contained in:
saschawillems 2018-01-27 14:25:52 +01:00
parent df223f5b9b
commit 3540e9e07a
2 changed files with 0 additions and 455 deletions

View file

@ -94,7 +94,6 @@ set(EXAMPLES
texturecubemap texturecubemap
texturemipmapgen texturemipmapgen
texturesparseresidency texturesparseresidency
timestampquery
triangle triangle
viewportarray viewportarray
vulkanscene vulkanscene

View file

@ -1,454 +0,0 @@
/*
* Vulkan Example - Using device timestamps for performance measurements
*
* Copyright (C) 2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
#define OBJ_DIM 0.05f
class VulkanExample : public VulkanExampleBase
{
public:
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_COLOR,
});
struct Models {
vks::Model skybox;
std::vector<vks::Model> objects;
int32_t objectIndex = 3;
std::vector<std::string> names;
} models;
struct {
vks::Buffer VS;
} uniformBuffers;
struct UBOVS {
glm::mat4 projection;
glm::mat4 modelview;
glm::vec4 lightPos = glm::vec4(-10.0f, -10.0f, 10.0f, 1.0f);
} uboVS;
std::vector<VkPipeline> pipelines;
std::vector<std::string> pipelineNames;
int32_t pipelineIndex = 0;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkQueryPool queryPool;
std::vector<float> timings;
int32_t gridSize = 3;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Device timestamps";
camera.type = Camera::CameraType::firstperson;
camera.setPosition(glm::vec3(-4.0f, 3.0f, -3.75f));
camera.setRotation(glm::vec3(-15.25f, -46.5f, 0.0f));
camera.movementSpeed = 4.0f;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.rotationSpeed = 0.25f;
settings.overlay = true;
}
~VulkanExample()
{
for (auto& pipeline : pipelines) {
vkDestroyPipeline(device, pipeline, nullptr);
}
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyQueryPool(device, queryPool, nullptr);
uniformBuffers.VS.destroy();
for (auto& model : models.objects) {
model.destroy();
}
//models.skybox.destroy();
}
// Setup a query pool for storing device timestamp query results
void setupQueryPool()
{
timings.resize(3);
// Create query pool
VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
queryPoolInfo.queryType = VK_QUERY_TYPE_TIMESTAMP;
queryPoolInfo.queryCount = static_cast<uint32_t>(timings.size() - 1);
VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool));
}
// Retrieves the results of the occlusion queries submitted to the command buffer
void getQueryResults()
{
timings.resize(2);
uint32_t start = 0;
uint32_t end = 0;
vkGetQueryPoolResults(device, queryPool, 0, 1, sizeof(uint32_t), &start, 0, VK_QUERY_RESULT_WAIT_BIT);
// timestampPeriod is the number of nanoseconds per timestamp value increment
float factor = 1e6f * deviceProperties.limits.timestampPeriod;
vkGetQueryPoolResults(device, queryPool, 1, 1, sizeof(uint32_t), &end, 0, VK_QUERY_RESULT_WAIT_BIT);
timings[0] = (float)(end - start) / factor;
//end = start;
vkGetQueryPoolResults(device, queryPool, 2, 1, sizeof(uint32_t), &end, 0, VK_QUERY_RESULT_WAIT_BIT);
timings[1] = (float)(end - start) / factor;
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Reset timestamp query pool
vkCmdResetQueryPool(drawCmdBuffers[i], queryPool, 0, 2);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdWriteTimestamp(drawCmdBuffers[i], VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, queryPool, 0);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines[pipelineIndex]);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.objects[models.objectIndex].vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32);
for (uint32_t y = 0; y < gridSize; y++) {
for (uint32_t x = 0; x < gridSize; x++) {
glm::vec3 pos = glm::vec3(float(x - (gridSize / 2.0f)) * 2.5f, 0.0f, float(y - (gridSize / 2.0f)) * 2.5f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
}
}
vkCmdWriteTimestamp(drawCmdBuffers[i], VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, queryPool, 1);
vkCmdWriteTimestamp(drawCmdBuffers[i], VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, queryPool, 2);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Read query results for displaying in next frame
getQueryResults();
VulkanExampleBase::submitFrame();
}
void loadAssets()
{
// Skybox
// models.skybox.loadFromFile(getAssetPath() + "models/cube.obj", vertexLayout, 1.0f, vulkanDevice, queue);
// Objects
std::vector<std::string> filenames = { "geosphere.obj", "teapot.dae", "torusknot.obj", "venus.fbx" };
for (auto file : filenames) {
vks::Model model;
model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, OBJ_DIM * (file == "venus.fbx" ? 3.0f : 1.0f), vulkanDevice, queue);
models.objects.push_back(model);
}
models.names = { "Sphere", "Teapot", "Torusknot", "Venus" };
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
// One uniform buffer block for each mesh
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec3), 0);
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.VS.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
// Vertex bindings and attributes
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX)
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0 : Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1 : Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 6) // Location 3 : Color
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCreateInfo.pVertexInputState = &vertexInputState;
pipelines.resize(3);
// Phong shading
shaderStages[0] = loadShader(getAssetPath() + "shaders/timestampquery/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/timestampquery/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines[0]));
// Color only
shaderStages[0] = loadShader(getAssetPath() + "shaders/timestampquery/simple.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/timestampquery/simple.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines[1]));
// Blending
shaderStages[0] = loadShader(getAssetPath() + "shaders/timestampquery/occluder.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/timestampquery/occluder.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
depthStencilState.depthWriteEnable = VK_FALSE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines[2]));
pipelineNames = { "Shaded", "Color only", "Blending" };
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.VS,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.VS.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelview = camera.matrices.view;
memcpy(uniformBuffers.VS.mapped, &uboVS, sizeof(uboVS));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
setupQueryPool();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->comboBox("Object type", &models.objectIndex, models.names)) {
updateUniformBuffers();
buildCommandBuffers();
}
if (overlay->comboBox("Pipeline", &pipelineIndex, pipelineNames)) {
buildCommandBuffers();
}
if (overlay->sliderInt("Grid size", &gridSize, 1, 10)) {
buildCommandBuffers();
}
}
if (overlay->header("Timings")) {
if (!timings.empty()) {
overlay->text("Frame start to VS = %.3f", timings[0]);
overlay->text("VS to FS = %.3f", timings[1]);
}
}
}
};
VULKAN_EXAMPLE_MAIN()