Reworked inline uniform block example

This commit is contained in:
saschawillems 2018-10-07 10:27:28 +02:00
parent f1a7e66de1
commit 367fce5b46
9 changed files with 349 additions and 302 deletions

View file

@ -1,5 +1,5 @@
/*
* Vulkan Example - Using inline uniform blocks for passing data to shader stages
* Vulkan Example - Using inline uniform blocks for passing data to shader stages at descriptor setup
* Note: Requires a device that supports the VK_EXT_inline_uniform_block extension
*
@ -20,81 +20,93 @@
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <gli/gli.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanTexture.hpp"
#include "VulkanBuffer.hpp"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
#define OBJ_DIM 0.025f
float rnd() {
return ((float)rand() / (RAND_MAX));
}
class VulkanExample : public VulkanExampleBase
{
public:
bool animate = true;
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
});
/*
[POI] This is the data structure that'll be passed using inline uniform blocks
*/
struct InlineBlockData {
glm::vec4 color;
};
vks::Model model;
struct Cube {
struct Matrices {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
} matrices;
InlineBlockData inlineBlockData;
struct Object {
struct Material {
float roughness;
float metallic;
float r, g, b;
float ambient;
} material;
VkDescriptorSet descriptorSet;
vks::Texture2D texture;
vks::Buffer uniformBuffer;
glm::vec3 rotation;
};
std::array<Cube, 2> cubes;
std::array<Object, 16> objects;
struct {
vks::Buffer scene;
} uniformBuffers;
struct UBOMatrices {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec3 camPos;
} uboMatrices;
struct Models {
vks::Model cube;
} models;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
struct DescriptorSetLaysts {
VkDescriptorSetLayout scene;
VkDescriptorSetLayout object;
} descriptorSetLayouts;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Inline uniform blocks";
camera.type = Camera::CameraType::firstperson;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.0f));
camera.setRotation(glm::vec3(0.0, 0.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.movementSpeed = 4.0f;
camera.rotationSpeed = 0.25f;
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
srand((unsigned int)time(0));
/*
[POI] Enable extension required for conditional rendering
*/
[POI] Enable extensions required for inline uniform blocks
*/
enabledDeviceExtensions.push_back(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME);
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.cube.destroy();
for (auto cube : cubes) {
cube.uniformBuffer.destroy();
cube.texture.destroy();
}
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.scene, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.object, nullptr);
model.destroy();
uniformBuffers.scene.destroy();
}
void buildCommandBuffers()
@ -102,7 +114,7 @@ public:
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
@ -114,15 +126,14 @@ public:
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
@ -130,14 +141,30 @@ public:
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.cube.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.cube.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
for (auto cube : cubes) {
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &cube.descriptorSet, 0, nullptr);
vkCmdDrawIndexed(drawCmdBuffers[i], models.cube.indexCount, 1, 0, 0, 0);
// Render objects
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &model.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
uint32_t objcount = static_cast<uint32_t>(objects.size());
for (uint32_t x = 0; x < objcount; x++) {
/*
[POI] Bind descriptor sets
Set 0 = Scene matrices:
Set 1 = Object inline uniform block (In shader pbr.frag: layout (set = 1, binding = 0) uniform UniformInline ... )
*/
std::vector<VkDescriptorSet> descriptorSets = {
descriptorSet,
objects[x].descriptorSet
};
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 2, descriptorSets.data(), 0, nullptr);
glm::vec3 pos = glm::vec3(sin(glm::radians(x * (360.0f / objcount))), cos(glm::radians(x * (360.0f / objcount))), 0.0f) * 3.5f;
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
vkCmdDrawIndexed(drawCmdBuffers[i], model.indexCount, 1, 0, 0, 0);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
@ -148,184 +175,135 @@ public:
void loadAssets()
{
models.cube.loadFromFile(getAssetPath() + "models/cube.dae", vertexLayout, 1.0f, vulkanDevice, queue);
cubes[0].texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
cubes[1].texture.loadFromFile(getAssetPath() + "textures/crate02_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
cubes[0].inlineBlockData.color = glm::vec4(1.0f, 0.0f, 0.0f, 1.0f);
cubes[1].inlineBlockData.color = glm::vec4(0.0f, 0.0f, 1.0f, 1.0f);
model.loadFromFile(getAssetPath() + "models/geosphere.obj", vertexLayout, OBJ_DIM, vulkanDevice, queue);
// Setup random materials for every object in the scene
for (uint32_t i = 0; i < objects.size(); i++) {
objects[i].material.r = rnd();
objects[i].material.g = rnd();
objects[i].material.b = rnd();
objects[i].material.ambient = 0.05f;
objects[i].material.roughness = glm::clamp(rnd(), 0.005f, 1.0f);
objects[i].material.metallic = glm::clamp(rnd(), 0.005f, 1.0f);
}
}
/*
[POI] Set up descriptor sets and set layout
*/
void setupDescriptors()
void setupDescriptorSetLayout()
{
const uint32_t cubeCount = static_cast<uint32_t>(cubes.size());
// Scene
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayouts.scene));
}
// Objects
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
/*
[POI] Setup inline uniform block for set 0 at binding 2 (see vertex shader)
Descriptor count for an inline uniform block contains data sizes of the block (last parameter)
*/
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(Object::Material)),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayouts.object));
}
/*
Descriptor pool
[POI] Pipeline layout
*/
std::vector<VkDescriptorSetLayout> setLayouts = {
descriptorSetLayouts.scene, // Set 0 = Scene matrices
descriptorSetLayouts.object // Set 1 = Object inline uniform block
};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
std::array<VkDescriptorPoolSize, 3> descriptorPoolSizes{};
std::vector<VkPushConstantRange> pushConstantRanges = {
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec3), 0),
};
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
// One uniform buffer descriptor per cube
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorPoolSizes[0].descriptorCount = cubeCount;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, (static_cast<uint32_t>(objects.size()) + 1)),
/* [POI] TODO */
// TODO: split scene and object
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT, (static_cast<uint32_t>(objects.size()) + 1) * sizeof(Object::Material)),
};
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, static_cast<uint32_t>(objects.size()) + 1);
/*
[POI] One inline uniform block descriptor per cube
*/
descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
// Descriptor count for inline uniform blocks contains the combined data sizes of all inline uniform blocks used from this pool
descriptorPoolSizes[1].descriptorCount = cubeCount * sizeof(InlineBlockData);
// One combined image samples per cube
descriptorPoolSizes[2].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorPoolSizes[2].descriptorCount = static_cast<uint32_t>(cubes.size());
// Create the global descriptor pool
VkDescriptorPoolCreateInfo descriptorPoolCI = {};
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCI.poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size());
descriptorPoolCI.pPoolSizes = descriptorPoolSizes.data();
descriptorPoolCI.maxSets = static_cast<uint32_t>(descriptorPoolSizes.size());
#
/*
[POI] New structure that has to be chained into the descriptor pool create info if you want to allocate inline uniform blocks
[POI] New structure that has to be chained into the descriptor pool's createinfo if you want to allocate inline uniform blocks
*/
VkDescriptorPoolInlineUniformBlockCreateInfoEXT descriptorPoolInlineUniformBlockCreateInfo{};
descriptorPoolInlineUniformBlockCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT;
descriptorPoolInlineUniformBlockCreateInfo.maxInlineUniformBlockBindings = 1;
// Chain into descriptor pool create info
descriptorPoolCI.pNext = &descriptorPoolInlineUniformBlockCreateInfo;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
/*
Descriptor set layout
*/
// Sets
std::array<VkDescriptorSetLayoutBinding,3> setLayoutBindings{};
// Scene
VkDescriptorSetAllocateInfo descriptorAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.scene, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorAllocateInfo, &descriptorSet));
// Binding 0: Uniform buffers (used to pass matrices)
setLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
setLayoutBindings[0].binding = 0;
setLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
setLayoutBindings[0].descriptorCount = 1;
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
/*
[POI] Binding 1: Inline uniform block
*/
setLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
setLayoutBindings[1].binding = 1;
setLayoutBindings[1].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
// Descriptor count for an inline uniform block contains data sizes of the block
setLayoutBindings[1].descriptorCount = sizeof(InlineBlockData);
// Binding 2: Combined image sampler (used to pass per object texture information)
setLayoutBindings[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
setLayoutBindings[2].binding = 2;
setLayoutBindings[2].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
setLayoutBindings[2].descriptorCount = 1;
// Create the descriptor set layout
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
descriptorLayoutCI.pBindings = setLayoutBindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
/*
Descriptor sets
*/
for (auto &cube: cubes) {
// Allocates an empty descriptor set without actual descriptors from the pool using the set layout
VkDescriptorSetAllocateInfo allocateInfo{};
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocateInfo.descriptorPool = descriptorPool;
allocateInfo.descriptorSetCount = 1;
allocateInfo.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocateInfo, &cube.descriptorSet));
// Update the descriptor set with the actual descriptors matching shader bindings set in the layout
std::array<VkWriteDescriptorSet, 3> writeDescriptorSets{};
// Binding 0: Object matrices Uniform buffer
writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[0].dstSet = cube.descriptorSet;
writeDescriptorSets[0].dstBinding = 0;
writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSets[0].pBufferInfo = &cube.uniformBuffer.descriptor;
writeDescriptorSets[0].descriptorCount = 1;
/*
[POI] Binding 1: Inline uniform block
*/
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstSet = cube.descriptorSet;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
// The dstArrayElement member can be used to define an offset for inline uniform blocks
writeDescriptorSets[1].dstArrayElement = 0;
// TODO: API-Design from hell
writeDescriptorSets[1].descriptorCount = sizeof(glm::vec4);
// Objects
for (auto &object : objects) {
VkDescriptorSetAllocateInfo descriptorAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.object, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorAllocateInfo, &object.descriptorSet));
/*
[POI] New structure that defines size and data of the inline uniform block
[POI] New structure that defines size and data of the inline uniform block needs to be chained into the write descriptor set
We will be using this inline uniform block to pass per-object material information to the fragment shader
*/
VkWriteDescriptorSetInlineUniformBlockEXT writeDescriptorSetInlineUniformBlock{};
writeDescriptorSetInlineUniformBlock.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT;
writeDescriptorSetInlineUniformBlock.dataSize = sizeof(InlineBlockData);
writeDescriptorSetInlineUniformBlock.pData = &cube.inlineBlockData;
// Needs to be chained to an existing write descriptor set structure
writeDescriptorSets[1].pNext = &writeDescriptorSetInlineUniformBlock;
writeDescriptorSetInlineUniformBlock.dataSize = sizeof(Object::Material);
// Uniform data for the inline block
writeDescriptorSetInlineUniformBlock.pData = &object.material;
// Binding 2: Object texture
writeDescriptorSets[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[2].dstSet = cube.descriptorSet;
writeDescriptorSets[2].dstBinding = 2;
writeDescriptorSets[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSets[2].pImageInfo = &cube.texture.descriptor;
writeDescriptorSets[2].descriptorCount = 1;
/*
[POI] Setup the inline uniform block
*/
VkWriteDescriptorSet writeDescriptorSet{};
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
writeDescriptorSet.dstSet = object.descriptorSet;
writeDescriptorSet.dstBinding = 0;
// Descriptor count for an inline uniform block contains data sizes of the block(last parameter)
writeDescriptorSet.descriptorCount = sizeof(Object::Material);
// Chain inline uniform block structure
writeDescriptorSet.pNext = &writeDescriptorSetInlineUniformBlock;
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
}
void preparePipelines()
{
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()),0);
// Vertex bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
// Vertex bindings an attributes
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: UV
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3),
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
@ -333,8 +311,18 @@ public:
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfoCI.pVertexInputState = &vertexInputState;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCreateInfoCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCreateInfoCI.pRasterizationState = &rasterizationStateCI;
pipelineCreateInfoCI.pColorBlendState = &colorBlendStateCI;
@ -342,54 +330,39 @@ public:
pipelineCreateInfoCI.pViewportState = &viewportStateCI;
pipelineCreateInfoCI.pDepthStencilState = &depthStencilStateCI;
pipelineCreateInfoCI.pDynamicState = &dynamicStateCI;
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getAssetPath() + "shaders/inlineuniformblocks/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getAssetPath() + "shaders/inlineuniformblocks/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
pipelineCreateInfoCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfoCI.pStages = shaderStages.data();
pipelineCreateInfoCI.pVertexInputState = &vertexInputState;
shaderStages[0] = loadShader(getAssetPath() + "shaders/inlineuniformblocks/pbr.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/inlineuniformblocks/pbr.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfoCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
// Vertex shader matrix uniform buffer block
for (auto& cube : cubes) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&cube.uniformBuffer,
sizeof(Cube::Matrices)));
VK_CHECK_RESULT(cube.uniformBuffer.map());
}
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(uboMatrices)));
VK_CHECK_RESULT(uniformBuffers.scene.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
cubes[0].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
cubes[1].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3( 1.5f, 0.5f, 0.0f));
for (auto& cube : cubes) {
cube.matrices.projection = camera.matrices.perspective;
cube.matrices.view = camera.matrices.view;
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
memcpy(cube.uniformBuffer.mapped, &cube.matrices, sizeof(cube.matrices));
}
uboMatrices.projection = camera.matrices.perspective;
uboMatrices.view = camera.matrices.view;
uboMatrices.model = glm::mat4(1.0f);
uboMatrices.camPos = camera.position * -1.0f;
memcpy(uniformBuffers.scene.mapped, &uboMatrices, sizeof(uboMatrices));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
@ -398,8 +371,9 @@ public:
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
@ -409,24 +383,12 @@ public:
if (!prepared)
return;
draw();
if (animate) {
cubes[0].rotation.x += 2.5f * frameTimer;
if (cubes[0].rotation.x > 360.0f)
cubes[0].rotation.x -= 360.0f;
cubes[1].rotation.y += 2.0f * frameTimer;
if (cubes[1].rotation.x > 360.0f)
cubes[1].rotation.x -= 360.0f;
}
if ((camera.updated) || (animate)) {
if (camera.updated)
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Animate", &animate);
}
}
};