Reworked inline uniform block example

This commit is contained in:
saschawillems 2018-10-07 10:27:28 +02:00
parent f1a7e66de1
commit 367fce5b46
9 changed files with 349 additions and 302 deletions

View file

@ -1,23 +0,0 @@
#version 450
layout (set = 0, binding = 2) uniform sampler2D samplerColorMap;
layout (location = 0) in vec3 inNormal;
layout (location = 1) in vec3 inColor;
layout (location = 2) in vec2 inUV;
layout (location = 3) in vec3 inViewVec;
layout (location = 4) in vec3 inLightVec;
layout (location = 0) out vec4 outFragColor;
void main()
{
vec3 color = texture(samplerColorMap, inUV).rgb * inColor;
vec3 N = normalize(inNormal);
vec3 L = normalize(inLightVec);
vec3 V = normalize(inViewVec);
vec3 R = reflect(-L, N);
float diffuse = max(dot(N, L), 0.1);
outFragColor = vec4(color * diffuse, 1.0);
}

View file

@ -1,40 +0,0 @@
#version 450
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec2 inUV;
layout (location = 3) in vec3 inColor;
layout (set = 0, binding = 0) uniform UBOMatrices {
mat4 projection;
mat4 view;
mat4 model;
} uboMatrices;
layout (set = 0, binding = 1) uniform UniformInline {
vec4 color;
} uniformInline;
layout (location = 0) out vec3 outNormal;
layout (location = 1) out vec3 outColor;
layout (location = 2) out vec2 outUV;
layout (location = 3) out vec3 outViewVec;
layout (location = 4) out vec3 outLightVec;
out gl_PerVertex {
vec4 gl_Position;
};
void main()
{
outColor = inColor * uniformInline.color.rgb;
outUV = inUV;
gl_Position = uboMatrices.projection * uboMatrices.view * uboMatrices.model * vec4(inPos.xyz, 1.0);
vec4 pos = uboMatrices.model * vec4(inPos, 1.0);
outNormal = mat3(transpose(inverse(uboMatrices.model))) * normalize(inNormal);
vec3 lightPos = vec3(0.0f, -25.0f, 25.0f);
vec3 lPos = mat3(uboMatrices.model) * lightPos.xyz;
outLightVec = lPos - pos.xyz;
outViewVec = -pos.xyz;
}

View file

@ -0,0 +1,116 @@
#version 450
layout (location = 0) in vec3 inWorldPos;
layout (location = 1) in vec3 inNormal;
layout (set = 0, binding = 0) uniform UBO
{
mat4 projection;
mat4 model;
mat4 view;
vec3 camPos;
} ubo;
// Inline uniform block
layout (set = 1, binding = 0) uniform UniformInline {
float roughness;
float metallic;
float r;
float g;
float b;
float ambient;
} material;
layout (location = 0) out vec4 outColor;
const float PI = 3.14159265359;
vec3 materialcolor()
{
return vec3(material.r, material.g, material.b);
}
// Normal Distribution function --------------------------------------
float D_GGX(float dotNH, float roughness)
{
float alpha = roughness * roughness;
float alpha2 = alpha * alpha;
float denom = dotNH * dotNH * (alpha2 - 1.0) + 1.0;
return (alpha2)/(PI * denom*denom);
}
// Geometric Shadowing function --------------------------------------
float G_SchlicksmithGGX(float dotNL, float dotNV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float GL = dotNL / (dotNL * (1.0 - k) + k);
float GV = dotNV / (dotNV * (1.0 - k) + k);
return GL * GV;
}
// Fresnel function ----------------------------------------------------
vec3 F_Schlick(float cosTheta, float metallic)
{
vec3 F0 = mix(vec3(0.04), materialcolor(), metallic); // * material.specular
vec3 F = F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
return F;
}
// Specular BRDF composition --------------------------------------------
vec3 BRDF(vec3 L, vec3 V, vec3 N, float metallic, float roughness)
{
// Precalculate vectors and dot products
vec3 H = normalize (V + L);
float dotNV = clamp(dot(N, V), 0.0, 1.0);
float dotNL = clamp(dot(N, L), 0.0, 1.0);
float dotLH = clamp(dot(L, H), 0.0, 1.0);
float dotNH = clamp(dot(N, H), 0.0, 1.0);
// Light color fixed
vec3 lightColor = vec3(1.0);
vec3 color = vec3(0.0);
if (dotNL > 0.0)
{
float rroughness = max(0.05, roughness);
// D = Normal distribution (Distribution of the microfacets)
float D = D_GGX(dotNH, rroughness);
// G = Geometric shadowing term (Microfacets shadowing)
float G = G_SchlicksmithGGX(dotNL, dotNV, rroughness);
// F = Fresnel factor (Reflectance depending on angle of incidence)
vec3 F = F_Schlick(dotNV, metallic);
vec3 spec = D * F * G / (4.0 * dotNL * dotNV);
color += spec * dotNL * lightColor;
}
return color;
}
// ----------------------------------------------------------------------------
void main()
{
vec3 N = normalize(inNormal);
vec3 V = normalize(ubo.camPos - inWorldPos);
float roughness = material.roughness;
// Specular contribution
vec3 lightPos = vec3(0.0f, 0.0f, 10.0f);
vec3 Lo = vec3(0.0);
vec3 L = normalize(lightPos.xyz - inWorldPos);
Lo += BRDF(L, V, N, material.metallic, roughness);
// Combine with ambient
vec3 color = materialcolor() * material.ambient;
color += Lo;
// Gamma correct
color = pow(color, vec3(0.4545));
outColor = vec4(color, 1.0);
}

Binary file not shown.

View file

@ -0,0 +1,32 @@
#version 450
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNormal;
layout (set = 0, binding = 0) uniform UBO
{
mat4 projection;
mat4 model;
mat4 view;
vec3 camPos;
} ubo;
layout (location = 0) out vec3 outWorldPos;
layout (location = 1) out vec3 outNormal;
layout(push_constant) uniform PushConsts {
vec3 objPos;
} pushConsts;
out gl_PerVertex
{
vec4 gl_Position;
};
void main()
{
vec3 locPos = vec3(ubo.model * vec4(inPos, 1.0));
outWorldPos = locPos + pushConsts.objPos;
outNormal = mat3(ubo.model) * inNormal;
gl_Position = ubo.projection * ubo.view * vec4(outWorldPos, 1.0);
}

Binary file not shown.

View file

@ -1,5 +1,5 @@
/* /*
* Vulkan Example - Using inline uniform blocks for passing data to shader stages * Vulkan Example - Using inline uniform blocks for passing data to shader stages at descriptor setup
* Note: Requires a device that supports the VK_EXT_inline_uniform_block extension * Note: Requires a device that supports the VK_EXT_inline_uniform_block extension
* *
@ -20,67 +20,78 @@
#define GLM_FORCE_DEPTH_ZERO_TO_ONE #define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp> #include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <gli/gli.hpp>
#include <vulkan/vulkan.h> #include <vulkan/vulkan.h>
#include "vulkanexamplebase.h" #include "vulkanexamplebase.h"
#include "VulkanTexture.hpp" #include "VulkanBuffer.hpp"
#include "VulkanModel.hpp" #include "VulkanModel.hpp"
#define ENABLE_VALIDATION false #define ENABLE_VALIDATION false
#define OBJ_DIM 0.025f
float rnd() {
return ((float)rand() / (RAND_MAX));
}
class VulkanExample : public VulkanExampleBase class VulkanExample : public VulkanExampleBase
{ {
public: public:
bool animate = true;
vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
}); });
/* vks::Model model;
[POI] This is the data structure that'll be passed using inline uniform blocks
*/
struct InlineBlockData {
glm::vec4 color;
};
struct Cube { struct Object {
struct Matrices { struct Material {
glm::mat4 projection; float roughness;
glm::mat4 view; float metallic;
glm::mat4 model; float r, g, b;
} matrices; float ambient;
InlineBlockData inlineBlockData; } material;
VkDescriptorSet descriptorSet; VkDescriptorSet descriptorSet;
vks::Texture2D texture;
vks::Buffer uniformBuffer;
glm::vec3 rotation;
}; };
std::array<Cube, 2> cubes; std::array<Object, 16> objects;
struct Models { struct {
vks::Model cube; vks::Buffer scene;
} models; } uniformBuffers;
struct UBOMatrices {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec3 camPos;
} uboMatrices;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout; VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout; struct DescriptorSetLaysts {
VkDescriptorSetLayout scene;
VkDescriptorSetLayout object;
} descriptorSetLayouts;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{ {
title = "Inline uniform blocks"; title = "Inline uniform blocks";
camera.type = Camera::CameraType::firstperson;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.0f));
camera.setRotation(glm::vec3(0.0, 0.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.movementSpeed = 4.0f;
camera.rotationSpeed = 0.25f;
settings.overlay = true; settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); srand((unsigned int)time(0));
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
/* /*
[POI] Enable extension required for conditional rendering [POI] Enable extensions required for inline uniform blocks
*/ */
enabledDeviceExtensions.push_back(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME);
} }
@ -88,13 +99,14 @@ public:
~VulkanExample() ~VulkanExample()
{ {
vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.scene, nullptr);
models.cube.destroy(); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.object, nullptr);
for (auto cube : cubes) {
cube.uniformBuffer.destroy(); model.destroy();
cube.texture.destroy();
} uniformBuffers.scene.destroy();
} }
void buildCommandBuffers() void buildCommandBuffers()
@ -102,7 +114,7 @@ public:
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2]; VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 }; clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
@ -114,15 +126,14 @@ public:
renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues; renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i]; renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
@ -130,14 +141,30 @@ public:
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 }; VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.cube.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.cube.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
for (auto cube : cubes) { // Render objects
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &cube.descriptorSet, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdDrawIndexed(drawCmdBuffers[i], models.cube.indexCount, 1, 0, 0, 0); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &model.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
uint32_t objcount = static_cast<uint32_t>(objects.size());
for (uint32_t x = 0; x < objcount; x++) {
/*
[POI] Bind descriptor sets
Set 0 = Scene matrices:
Set 1 = Object inline uniform block (In shader pbr.frag: layout (set = 1, binding = 0) uniform UniformInline ... )
*/
std::vector<VkDescriptorSet> descriptorSets = {
descriptorSet,
objects[x].descriptorSet
};
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 2, descriptorSets.data(), 0, nullptr);
glm::vec3 pos = glm::vec3(sin(glm::radians(x * (360.0f / objcount))), cos(glm::radians(x * (360.0f / objcount))), 0.0f) * 3.5f;
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
vkCmdDrawIndexed(drawCmdBuffers[i], model.indexCount, 1, 0, 0, 0);
} }
drawUI(drawCmdBuffers[i]); drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]);
@ -148,184 +175,135 @@ public:
void loadAssets() void loadAssets()
{ {
models.cube.loadFromFile(getAssetPath() + "models/cube.dae", vertexLayout, 1.0f, vulkanDevice, queue); model.loadFromFile(getAssetPath() + "models/geosphere.obj", vertexLayout, OBJ_DIM, vulkanDevice, queue);
cubes[0].texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
cubes[1].texture.loadFromFile(getAssetPath() + "textures/crate02_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); // Setup random materials for every object in the scene
cubes[0].inlineBlockData.color = glm::vec4(1.0f, 0.0f, 0.0f, 1.0f); for (uint32_t i = 0; i < objects.size(); i++) {
cubes[1].inlineBlockData.color = glm::vec4(0.0f, 0.0f, 1.0f, 1.0f); objects[i].material.r = rnd();
objects[i].material.g = rnd();
objects[i].material.b = rnd();
objects[i].material.ambient = 0.05f;
objects[i].material.roughness = glm::clamp(rnd(), 0.005f, 1.0f);
objects[i].material.metallic = glm::clamp(rnd(), 0.005f, 1.0f);
}
}
void setupDescriptorSetLayout()
{
// Scene
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayouts.scene));
}
// Objects
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
/*
[POI] Setup inline uniform block for set 0 at binding 2 (see vertex shader)
Descriptor count for an inline uniform block contains data sizes of the block (last parameter)
*/
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(Object::Material)),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayouts.object));
} }
/* /*
[POI] Set up descriptor sets and set layout [POI] Pipeline layout
*/ */
void setupDescriptors() std::vector<VkDescriptorSetLayout> setLayouts = {
descriptorSetLayouts.scene, // Set 0 = Scene matrices
descriptorSetLayouts.object // Set 1 = Object inline uniform block
};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
std::vector<VkPushConstantRange> pushConstantRanges = {
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec3), 0),
};
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{ {
const uint32_t cubeCount = static_cast<uint32_t>(cubes.size()); // Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, (static_cast<uint32_t>(objects.size()) + 1)),
/* [POI] TODO */
// TODO: split scene and object
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT, (static_cast<uint32_t>(objects.size()) + 1) * sizeof(Object::Material)),
};
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, static_cast<uint32_t>(objects.size()) + 1);
/* /*
Descriptor pool [POI] New structure that has to be chained into the descriptor pool's createinfo if you want to allocate inline uniform blocks
*/
std::array<VkDescriptorPoolSize, 3> descriptorPoolSizes{};
// One uniform buffer descriptor per cube
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorPoolSizes[0].descriptorCount = cubeCount;
/*
[POI] One inline uniform block descriptor per cube
*/
descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
// Descriptor count for inline uniform blocks contains the combined data sizes of all inline uniform blocks used from this pool
descriptorPoolSizes[1].descriptorCount = cubeCount * sizeof(InlineBlockData);
// One combined image samples per cube
descriptorPoolSizes[2].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorPoolSizes[2].descriptorCount = static_cast<uint32_t>(cubes.size());
// Create the global descriptor pool
VkDescriptorPoolCreateInfo descriptorPoolCI = {};
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCI.poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size());
descriptorPoolCI.pPoolSizes = descriptorPoolSizes.data();
descriptorPoolCI.maxSets = static_cast<uint32_t>(descriptorPoolSizes.size());
#
/*
[POI] New structure that has to be chained into the descriptor pool create info if you want to allocate inline uniform blocks
*/ */
VkDescriptorPoolInlineUniformBlockCreateInfoEXT descriptorPoolInlineUniformBlockCreateInfo{}; VkDescriptorPoolInlineUniformBlockCreateInfoEXT descriptorPoolInlineUniformBlockCreateInfo{};
descriptorPoolInlineUniformBlockCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT; descriptorPoolInlineUniformBlockCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT;
descriptorPoolInlineUniformBlockCreateInfo.maxInlineUniformBlockBindings = 1; descriptorPoolInlineUniformBlockCreateInfo.maxInlineUniformBlockBindings = 1;
// Chain into descriptor pool create info
descriptorPoolCI.pNext = &descriptorPoolInlineUniformBlockCreateInfo; descriptorPoolCI.pNext = &descriptorPoolInlineUniformBlockCreateInfo;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool)); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
/* // Sets
Descriptor set layout
*/
std::array<VkDescriptorSetLayoutBinding,3> setLayoutBindings{}; // Scene
VkDescriptorSetAllocateInfo descriptorAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.scene, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorAllocateInfo, &descriptorSet));
// Binding 0: Uniform buffers (used to pass matrices) std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
setLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
setLayoutBindings[0].binding = 0; };
setLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
setLayoutBindings[0].descriptorCount = 1;
// Objects
for (auto &object : objects) {
VkDescriptorSetAllocateInfo descriptorAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.object, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorAllocateInfo, &object.descriptorSet));
/* /*
[POI] Binding 1: Inline uniform block [POI] New structure that defines size and data of the inline uniform block needs to be chained into the write descriptor set
*/ We will be using this inline uniform block to pass per-object material information to the fragment shader
setLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
setLayoutBindings[1].binding = 1;
setLayoutBindings[1].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
// Descriptor count for an inline uniform block contains data sizes of the block
setLayoutBindings[1].descriptorCount = sizeof(InlineBlockData);
// Binding 2: Combined image sampler (used to pass per object texture information)
setLayoutBindings[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
setLayoutBindings[2].binding = 2;
setLayoutBindings[2].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
setLayoutBindings[2].descriptorCount = 1;
// Create the descriptor set layout
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
descriptorLayoutCI.pBindings = setLayoutBindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
/*
Descriptor sets
*/
for (auto &cube: cubes) {
// Allocates an empty descriptor set without actual descriptors from the pool using the set layout
VkDescriptorSetAllocateInfo allocateInfo{};
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocateInfo.descriptorPool = descriptorPool;
allocateInfo.descriptorSetCount = 1;
allocateInfo.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocateInfo, &cube.descriptorSet));
// Update the descriptor set with the actual descriptors matching shader bindings set in the layout
std::array<VkWriteDescriptorSet, 3> writeDescriptorSets{};
// Binding 0: Object matrices Uniform buffer
writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[0].dstSet = cube.descriptorSet;
writeDescriptorSets[0].dstBinding = 0;
writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSets[0].pBufferInfo = &cube.uniformBuffer.descriptor;
writeDescriptorSets[0].descriptorCount = 1;
/*
[POI] Binding 1: Inline uniform block
*/
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstSet = cube.descriptorSet;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
// The dstArrayElement member can be used to define an offset for inline uniform blocks
writeDescriptorSets[1].dstArrayElement = 0;
// TODO: API-Design from hell
writeDescriptorSets[1].descriptorCount = sizeof(glm::vec4);
/*
[POI] New structure that defines size and data of the inline uniform block
*/ */
VkWriteDescriptorSetInlineUniformBlockEXT writeDescriptorSetInlineUniformBlock{}; VkWriteDescriptorSetInlineUniformBlockEXT writeDescriptorSetInlineUniformBlock{};
writeDescriptorSetInlineUniformBlock.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT; writeDescriptorSetInlineUniformBlock.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT;
writeDescriptorSetInlineUniformBlock.dataSize = sizeof(InlineBlockData); writeDescriptorSetInlineUniformBlock.dataSize = sizeof(Object::Material);
writeDescriptorSetInlineUniformBlock.pData = &cube.inlineBlockData; // Uniform data for the inline block
// Needs to be chained to an existing write descriptor set structure writeDescriptorSetInlineUniformBlock.pData = &object.material;
writeDescriptorSets[1].pNext = &writeDescriptorSetInlineUniformBlock;
// Binding 2: Object texture /*
writeDescriptorSets[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; [POI] Setup the inline uniform block
writeDescriptorSets[2].dstSet = cube.descriptorSet; */
writeDescriptorSets[2].dstBinding = 2; VkWriteDescriptorSet writeDescriptorSet{};
writeDescriptorSets[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[2].pImageInfo = &cube.texture.descriptor; writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
writeDescriptorSets[2].descriptorCount = 1; writeDescriptorSet.dstSet = object.descriptorSet;
writeDescriptorSet.dstBinding = 0;
// Descriptor count for an inline uniform block contains data sizes of the block(last parameter)
writeDescriptorSet.descriptorCount = sizeof(Object::Material);
// Chain inline uniform block structure
writeDescriptorSet.pNext = &writeDescriptorSetInlineUniformBlock;
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
} }
} }
void preparePipelines() void preparePipelines()
{ {
VkPipelineLayoutCreateInfo pipelineLayoutCI{}; // Vertex bindings an attributes
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()),0);
// Vertex bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX), vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
}; };
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = { std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: UV
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
}; };
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size()); vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
@ -333,8 +311,18 @@ public:
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size()); vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
pipelineCreateInfoCI.pVertexInputState = &vertexInputState; VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCreateInfoCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCreateInfoCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCreateInfoCI.pRasterizationState = &rasterizationStateCI; pipelineCreateInfoCI.pRasterizationState = &rasterizationStateCI;
pipelineCreateInfoCI.pColorBlendState = &colorBlendStateCI; pipelineCreateInfoCI.pColorBlendState = &colorBlendStateCI;
@ -342,54 +330,39 @@ public:
pipelineCreateInfoCI.pViewportState = &viewportStateCI; pipelineCreateInfoCI.pViewportState = &viewportStateCI;
pipelineCreateInfoCI.pDepthStencilState = &depthStencilStateCI; pipelineCreateInfoCI.pDepthStencilState = &depthStencilStateCI;
pipelineCreateInfoCI.pDynamicState = &dynamicStateCI; pipelineCreateInfoCI.pDynamicState = &dynamicStateCI;
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getAssetPath() + "shaders/inlineuniformblocks/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getAssetPath() + "shaders/inlineuniformblocks/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
pipelineCreateInfoCI.stageCount = static_cast<uint32_t>(shaderStages.size()); pipelineCreateInfoCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfoCI.pStages = shaderStages.data(); pipelineCreateInfoCI.pStages = shaderStages.data();
pipelineCreateInfoCI.pVertexInputState = &vertexInputState;
shaderStages[0] = loadShader(getAssetPath() + "shaders/inlineuniformblocks/pbr.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/inlineuniformblocks/pbr.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfoCI, nullptr, &pipeline)); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfoCI, nullptr, &pipeline));
} }
void prepareUniformBuffers() void prepareUniformBuffers()
{ {
// Vertex shader matrix uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(uboMatrices)));
for (auto& cube : cubes) { VK_CHECK_RESULT(uniformBuffers.scene.map());
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&cube.uniformBuffer,
sizeof(Cube::Matrices)));
VK_CHECK_RESULT(cube.uniformBuffer.map());
}
updateUniformBuffers(); updateUniformBuffers();
} }
void updateUniformBuffers() void updateUniformBuffers()
{ {
cubes[0].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f)); uboMatrices.projection = camera.matrices.perspective;
cubes[1].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3( 1.5f, 0.5f, 0.0f)); uboMatrices.view = camera.matrices.view;
uboMatrices.model = glm::mat4(1.0f);
for (auto& cube : cubes) { uboMatrices.camPos = camera.position * -1.0f;
cube.matrices.projection = camera.matrices.perspective; memcpy(uniformBuffers.scene.mapped, &uboMatrices, sizeof(uboMatrices));
cube.matrices.view = camera.matrices.view;
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
memcpy(cube.uniformBuffer.mapped, &cube.matrices, sizeof(cube.matrices));
}
} }
void draw() void draw()
{ {
VulkanExampleBase::prepareFrame(); VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1; submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame(); VulkanExampleBase::submitFrame();
} }
@ -398,8 +371,9 @@ public:
VulkanExampleBase::prepare(); VulkanExampleBase::prepare();
loadAssets(); loadAssets();
prepareUniformBuffers(); prepareUniformBuffers();
setupDescriptors(); setupDescriptorSetLayout();
preparePipelines(); preparePipelines();
setupDescriptorSets();
buildCommandBuffers(); buildCommandBuffers();
prepared = true; prepared = true;
} }
@ -409,24 +383,12 @@ public:
if (!prepared) if (!prepared)
return; return;
draw(); draw();
if (animate) { if (camera.updated)
cubes[0].rotation.x += 2.5f * frameTimer;
if (cubes[0].rotation.x > 360.0f)
cubes[0].rotation.x -= 360.0f;
cubes[1].rotation.y += 2.0f * frameTimer;
if (cubes[1].rotation.x > 360.0f)
cubes[1].rotation.x -= 360.0f;
}
if ((camera.updated) || (animate)) {
updateUniformBuffers(); updateUniformBuffers();
} }
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{ {
if (overlay->header("Settings")) {
overlay->checkBox("Animate", &animate);
}
} }
}; };