Added basic descriptor sets usage example
This commit is contained in:
parent
f5ba1e8939
commit
3c578a065f
7 changed files with 486 additions and 12 deletions
427
examples/descriptorsets/descriptorsets.cpp
Normal file
427
examples/descriptorsets/descriptorsets.cpp
Normal file
|
|
@ -0,0 +1,427 @@
|
|||
/*
|
||||
* Vulkan Example - Using descriptor sets for passing data to shader stages
|
||||
*
|
||||
* Relevant code parts are marked with [POI]
|
||||
*
|
||||
* Copyright (C) 2018 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
|
||||
#define GLM_FORCE_RADIANS
|
||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
#include <vulkan/vulkan.h>
|
||||
#include "vulkanexamplebase.h"
|
||||
#include "VulkanTexture.hpp"
|
||||
#include "VulkanModel.hpp"
|
||||
|
||||
#define ENABLE_VALIDATION false
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
bool animate = true;
|
||||
|
||||
vks::VertexLayout vertexLayout = vks::VertexLayout({
|
||||
vks::VERTEX_COMPONENT_POSITION,
|
||||
vks::VERTEX_COMPONENT_NORMAL,
|
||||
vks::VERTEX_COMPONENT_UV,
|
||||
vks::VERTEX_COMPONENT_COLOR,
|
||||
});
|
||||
|
||||
struct Cube {
|
||||
struct Matrices {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 view;
|
||||
glm::mat4 model;
|
||||
} matrices;
|
||||
VkDescriptorSet descriptorSet;
|
||||
vks::Texture2D texture;
|
||||
vks::Buffer uniformBuffer;
|
||||
glm::vec3 rotation;
|
||||
};
|
||||
std::array<Cube, 2> cubes;
|
||||
|
||||
struct Models {
|
||||
vks::Model cube;
|
||||
} models;
|
||||
|
||||
VkPipeline pipeline;
|
||||
VkPipelineLayout pipelineLayout;
|
||||
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
||||
{
|
||||
title = "Using descriptor Sets";
|
||||
settings.overlay = true;
|
||||
camera.type = Camera::CameraType::lookat;
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
||||
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
|
||||
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
vkDestroyPipeline(device, pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
models.cube.destroy();
|
||||
for (auto cube : cubes) {
|
||||
cube.uniformBuffer.destroy();
|
||||
cube.texture.destroy();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void getEnabledFeatures()
|
||||
{
|
||||
if (deviceFeatures.samplerAnisotropy) {
|
||||
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
||||
};
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = defaultClearColor;
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
||||
|
||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.cube.vertices.buffer, offsets);
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.cube.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
|
||||
/*
|
||||
[POI] Render cubes with separate descriptor sets
|
||||
*/
|
||||
for (auto cube : cubes) {
|
||||
// Bind the cube's descriptor set. This tells the command buffer to use the uniform buffer and image set for this cube
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &cube.descriptorSet, 0, nullptr);
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], models.cube.indexCount, 1, 0, 0, 0);
|
||||
}
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void loadAssets()
|
||||
{
|
||||
models.cube.loadFromFile(getAssetPath() + "models/cube.dae", vertexLayout, 1.0f, vulkanDevice, queue);
|
||||
cubes[0].texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
||||
cubes[1].texture.loadFromFile(getAssetPath() + "textures/crate02_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
||||
}
|
||||
|
||||
/*
|
||||
[POI] Set up descriptor sets and set layout
|
||||
*/
|
||||
void setupDescriptors()
|
||||
{
|
||||
/*
|
||||
|
||||
Descriptor set layout
|
||||
|
||||
The layout describes the shader bindings and types used for a certain descriptor layout and as such must match the shader bindings
|
||||
|
||||
Shader bindings used in this example:
|
||||
|
||||
VS:
|
||||
layout (set = 0, binding = 0) uniform UBOMatrices ...
|
||||
|
||||
FS :
|
||||
layout (set = 0, binding = 1) uniform sampler2D ...;
|
||||
|
||||
*/
|
||||
|
||||
std::array<VkDescriptorSetLayoutBinding,2> setLayoutBindings{};
|
||||
|
||||
/*
|
||||
Binding 0: Uniform buffers (used to pass matrices matrices)
|
||||
*/
|
||||
setLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
||||
// Shader binding point
|
||||
setLayoutBindings[0].binding = 0;
|
||||
// Accessible from the vertex shader only (flags can be combined to make it accessible to multiple shader stages)
|
||||
setLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
||||
// Binding contains one element (can be used for array bindings)
|
||||
setLayoutBindings[0].descriptorCount = 1;
|
||||
|
||||
/*
|
||||
Binding 1: Combined image sampler (used to pass per object texture information)
|
||||
*/
|
||||
setLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
||||
setLayoutBindings[1].binding = 1;
|
||||
// Accessible from the fragment shader only
|
||||
setLayoutBindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
|
||||
setLayoutBindings[1].descriptorCount = 1;
|
||||
|
||||
// Create the descriptor set layout
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
|
||||
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
|
||||
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
|
||||
descriptorLayoutCI.pBindings = setLayoutBindings.data();
|
||||
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
|
||||
|
||||
/*
|
||||
|
||||
Descriptor pool
|
||||
|
||||
Actual descriptors are allocated from a descriptor pool telling the driver what types and how many
|
||||
descriptors this application will use
|
||||
|
||||
An application can have multiple pools (e.g. for multiple threads) with any number of descriptor types
|
||||
as long as device limits are not surpassed
|
||||
|
||||
It's good practice to allocate pools with actually required descriptor types and counts
|
||||
|
||||
*/
|
||||
|
||||
std::array<VkDescriptorPoolSize, 2> descriptorPoolSizes{};
|
||||
|
||||
// Uniform buffers : 1 for scene and 1 per object (scene and local matrices)
|
||||
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
||||
descriptorPoolSizes[0].descriptorCount = 1 + static_cast<uint32_t>(cubes.size());
|
||||
|
||||
// Combined image samples : 1 per mesh texture
|
||||
descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
||||
descriptorPoolSizes[1].descriptorCount = static_cast<uint32_t>(cubes.size());
|
||||
|
||||
// Create the global descriptor pool
|
||||
VkDescriptorPoolCreateInfo descriptorPoolCI = {};
|
||||
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
||||
descriptorPoolCI.poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size());
|
||||
descriptorPoolCI.pPoolSizes = descriptorPoolSizes.data();
|
||||
// Max. number of descriptor sets that can be allocted from this pool (one per object)
|
||||
descriptorPoolCI.maxSets = static_cast<uint32_t>(descriptorPoolSizes.size());
|
||||
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
|
||||
|
||||
/*
|
||||
|
||||
Descriptor sets
|
||||
|
||||
Using the shared descriptor set layout and the descriptor pool we will now allocate the descriptor sets.
|
||||
|
||||
Descriptor sets contain the actual descriptor fo the objects (buffers, images) used at render time.
|
||||
|
||||
*/
|
||||
|
||||
for (auto &cube: cubes) {
|
||||
|
||||
// Allocates an empty descriptor set without actual descriptors from the pool using the set layout
|
||||
VkDescriptorSetAllocateInfo allocateInfo{};
|
||||
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
||||
allocateInfo.descriptorPool = descriptorPool;
|
||||
allocateInfo.descriptorSetCount = 1;
|
||||
allocateInfo.pSetLayouts = &descriptorSetLayout;
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocateInfo, &cube.descriptorSet));
|
||||
|
||||
// Update the descriptor set with the actual descriptors matching shader bindings set in the layout
|
||||
|
||||
std::array<VkWriteDescriptorSet, 2> writeDescriptorSets{};
|
||||
|
||||
/*
|
||||
Binding 0: Object matrices Uniform buffer
|
||||
*/
|
||||
writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
||||
writeDescriptorSets[0].dstSet = cube.descriptorSet;
|
||||
writeDescriptorSets[0].dstBinding = 0;
|
||||
writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
||||
writeDescriptorSets[0].pBufferInfo = &cube.uniformBuffer.descriptor;
|
||||
writeDescriptorSets[0].descriptorCount = 1;
|
||||
|
||||
/*
|
||||
Binding 1: Object texture
|
||||
*/
|
||||
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
||||
writeDescriptorSets[1].dstSet = cube.descriptorSet;
|
||||
writeDescriptorSets[1].dstBinding = 1;
|
||||
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
||||
// Images use a different descriptor strucutre, so we use pImageInfo instead of pBufferInfo
|
||||
writeDescriptorSets[1].pImageInfo = &cube.texture.descriptor;
|
||||
writeDescriptorSets[1].descriptorCount = 1;
|
||||
|
||||
// Execute the writes to update descriptors for this set
|
||||
// Note that it's also possible to gather all writes and only run updates once, even for multiple sets
|
||||
// This is possible because each VkWriteDescriptorSet also contains the destination set to be updated
|
||||
// For simplicity we will update once per set instead
|
||||
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
/*
|
||||
[POI] Create a pipeline layout used for our graphics pipeline
|
||||
*/
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
|
||||
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
||||
// The pipeline layout is based on the descriptor set layout we created above
|
||||
pipelineLayoutCI.setLayoutCount = 1;
|
||||
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
||||
|
||||
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()),0);
|
||||
|
||||
// Vertex bindings and attributes
|
||||
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
|
||||
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||
};
|
||||
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
|
||||
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
|
||||
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: UV
|
||||
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
|
||||
};
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
||||
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
|
||||
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
||||
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
||||
pipelineCreateInfoCI.pVertexInputState = &vertexInputState;
|
||||
pipelineCreateInfoCI.pInputAssemblyState = &inputAssemblyStateCI;
|
||||
pipelineCreateInfoCI.pRasterizationState = &rasterizationStateCI;
|
||||
pipelineCreateInfoCI.pColorBlendState = &colorBlendStateCI;
|
||||
pipelineCreateInfoCI.pMultisampleState = &multisampleStateCI;
|
||||
pipelineCreateInfoCI.pViewportState = &viewportStateCI;
|
||||
pipelineCreateInfoCI.pDepthStencilState = &depthStencilStateCI;
|
||||
pipelineCreateInfoCI.pDynamicState = &dynamicStateCI;
|
||||
|
||||
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
|
||||
loadShader(getAssetPath() + "shaders/descriptorsets/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
||||
loadShader(getAssetPath() + "shaders/descriptorsets/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
|
||||
};
|
||||
|
||||
pipelineCreateInfoCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCreateInfoCI.pStages = shaderStages.data();
|
||||
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfoCI, nullptr, &pipeline));
|
||||
}
|
||||
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
// Vertex shader matrix uniform buffer block
|
||||
for (auto& cube : cubes) {
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&cube.uniformBuffer,
|
||||
sizeof(glm::mat4)));
|
||||
VK_CHECK_RESULT(cube.uniformBuffer.map());
|
||||
}
|
||||
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
cubes[0].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
|
||||
cubes[1].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3( 1.5f, 0.5f, 0.0f));
|
||||
|
||||
for (auto& cube : cubes) {
|
||||
cube.matrices.projection = camera.matrices.perspective;
|
||||
cube.matrices.view = camera.matrices.view;
|
||||
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
||||
memcpy(cube.uniformBuffer.mapped, &cube.matrices, sizeof(cube.matrices));
|
||||
}
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VulkanExampleBase::prepareFrame();
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
loadAssets();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptors();
|
||||
preparePipelines();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
draw();
|
||||
if (animate) {
|
||||
cubes[0].rotation.x += 2.5f * frameTimer;
|
||||
if (cubes[0].rotation.x > 360.0f)
|
||||
cubes[0].rotation.x -= 360.0f;
|
||||
cubes[1].rotation.y += 2.0f * frameTimer;
|
||||
if (cubes[1].rotation.x > 360.0f)
|
||||
cubes[1].rotation.x -= 360.0f;
|
||||
}
|
||||
if ((camera.updated) || (animate)) {
|
||||
updateUniformBuffers();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
||||
{
|
||||
if (overlay->header("Settings")) {
|
||||
overlay->checkBox("Animate", &animate);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue