Replace dedicated offscreen command buffer and complicated synchronization with single command buffer and sync via sub pass dependencies

Proper stage and access masks
Code cleanup
This commit is contained in:
Sascha Willems 2019-04-14 19:38:30 +02:00
parent 6e26db239e
commit 50e4972d02

View file

@ -1,7 +1,7 @@
/* /*
* Vulkan Example - Omni directional shadows using a dynamic cube map * Vulkan Example - Omni directional shadows using a dynamic cube map
* *
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * Copyright (C) by Sascha Willems - www.saschawillems.de
* *
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/ */
@ -23,7 +23,6 @@
#include "VulkanTexture.hpp" #include "VulkanTexture.hpp"
#include "VulkanModel.hpp" #include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false #define ENABLE_VALIDATION false
// Texture properties // Texture properties
@ -42,12 +41,6 @@ public:
float zNear = 0.1f; float zNear = 0.1f;
float zFar = 1024.0f; float zFar = 1024.0f;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
// Vertex layout for the models // Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_POSITION,
@ -115,21 +108,20 @@ public:
VkRenderPass renderPass; VkRenderPass renderPass;
VkSampler sampler; VkSampler sampler;
VkDescriptorImageInfo descriptor; VkDescriptorImageInfo descriptor;
VkCommandBuffer commandBuffer = VK_NULL_HANDLE;
// Semaphore used to synchronize between offscreen and final scene render pass
VkSemaphore semaphore = VK_NULL_HANDLE;
} offscreenPass; } offscreenPass;
VkFormat fbDepthFormat; VkFormat fbDepthFormat;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{ {
zoom = -175.0f;
zoomSpeed = 10.0f;
timerSpeed *= 0.25f;
rotation = { -20.5f, -673.0f, 0.0f };
title = "Point light shadows (cubemap)"; title = "Point light shadows (cubemap)";
settings.overlay = true; settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(45.0f, (float)width / (float)height, zNear, zFar);
camera.setRotation(glm::vec3(-20.5f, -673.0f, 0.0f));
camera.setPosition(glm::vec3(0.0f, 0.0f, -175.0f));
zoomSpeed = 10.0f;
timerSpeed *= 0.25f;
} }
~VulkanExample() ~VulkanExample()
@ -176,9 +168,6 @@ public:
// Uniform buffers // Uniform buffers
uniformBuffers.offscreen.destroy(); uniformBuffers.offscreen.destroy();
uniformBuffers.scene.destroy(); uniformBuffers.scene.destroy();
vkFreeCommandBuffers(device, cmdPool, 1, &offscreenPass.commandBuffer);
vkDestroySemaphore(device, offscreenPass.semaphore, nullptr);
} }
void prepareCubeMap() void prepareCubeMap()
@ -371,11 +360,9 @@ public:
} }
// Updates a single cube map face // Updates a single cube map face
// Renders the scene with face's view and does // Renders the scene with face's view and does a copy from framebuffer to cube face
// a copy from framebuffer to cube face // Uses push constants for quick update of view matrix for the current cube map face
// Uses push constants for quick update of void updateCubeFace(uint32_t faceIndex, VkCommandBuffer commandBuffer)
// view matrix for the current cube map face
void updateCubeFace(uint32_t faceIndex)
{ {
VkClearValue clearValues[2]; VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
@ -418,30 +405,30 @@ public:
} }
// Render scene from cube face's point of view // Render scene from cube face's point of view
vkCmdBeginRenderPass(offscreenPass.commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update shader push constant block // Update shader push constant block
// Contains current face view matrix // Contains current face view matrix
vkCmdPushConstants( vkCmdPushConstants(
offscreenPass.commandBuffer, commandBuffer,
pipelineLayouts.offscreen, pipelineLayouts.offscreen,
VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_VERTEX_BIT,
0, 0,
sizeof(glm::mat4), sizeof(glm::mat4),
&viewMatrix); &viewMatrix);
vkCmdBindPipeline(offscreenPass.commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(offscreenPass.commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
VkDeviceSize offsets[1] = { 0 }; VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(offscreenPass.commandBuffer, VERTEX_BUFFER_BIND_ID, 1, &models.scene.vertices.buffer, offsets); vkCmdBindVertexBuffers(commandBuffer, 0, 1, &models.scene.vertices.buffer, offsets);
vkCmdBindIndexBuffer(offscreenPass.commandBuffer, models.scene.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindIndexBuffer(commandBuffer, models.scene.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offscreenPass.commandBuffer, models.scene.indexCount, 1, 0, 0, 0); vkCmdDrawIndexed(commandBuffer, models.scene.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offscreenPass.commandBuffer); vkCmdEndRenderPass(commandBuffer);
// Make sure color writes to the framebuffer are finished before using it as transfer source // Make sure color writes to the framebuffer are finished before using it as transfer source
vks::tools::setImageLayout( vks::tools::setImageLayout(
offscreenPass.commandBuffer, commandBuffer,
offscreenPass.color.image, offscreenPass.color.image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
@ -456,7 +443,7 @@ public:
// Change image layout of one cubemap face to transfer destination // Change image layout of one cubemap face to transfer destination
vks::tools::setImageLayout( vks::tools::setImageLayout(
offscreenPass.commandBuffer, commandBuffer,
shadowCubeMap.image, shadowCubeMap.image,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
@ -483,7 +470,7 @@ public:
// Put image copy into command buffer // Put image copy into command buffer
vkCmdCopyImage( vkCmdCopyImage(
offscreenPass.commandBuffer, commandBuffer,
offscreenPass.color.image, offscreenPass.color.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
shadowCubeMap.image, shadowCubeMap.image,
@ -493,7 +480,7 @@ public:
// Transform framebuffer color attachment back // Transform framebuffer color attachment back
vks::tools::setImageLayout( vks::tools::setImageLayout(
offscreenPass.commandBuffer, commandBuffer,
offscreenPass.color.image, offscreenPass.color.image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
@ -501,82 +488,62 @@ public:
// Change image layout of copied face to shader read // Change image layout of copied face to shader read
vks::tools::setImageLayout( vks::tools::setImageLayout(
offscreenPass.commandBuffer, commandBuffer,
shadowCubeMap.image, shadowCubeMap.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
cubeFaceSubresourceRange); cubeFaceSubresourceRange);
} }
// Command buffer for rendering and copying all cube map faces
void buildOffscreenCommandBuffer()
{
if (offscreenPass.commandBuffer == VK_NULL_HANDLE)
{
offscreenPass.commandBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
}
if (offscreenPass.semaphore == VK_NULL_HANDLE)
{
// Create a semaphore used to synchronize offscreen rendering and usage
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenPass.semaphore));
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(offscreenPass.commandBuffer, &cmdBufInfo));
VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(offscreenPass.commandBuffer, 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(offscreenPass.commandBuffer, 0, 1, &scissor);
for (uint32_t face = 0; face < 6; ++face)
{
updateCubeFace(face);
}
VK_CHECK_RESULT(vkEndCommandBuffer(offscreenPass.commandBuffer));
}
void buildCommandBuffers() void buildCommandBuffers()
{ {
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Generate shadow cube maps using one render pass per face
*/
{
VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
for (uint32_t face = 0; face < 6; face++) {
updateCubeFace(face, drawCmdBuffers[i]);
}
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Scene rendering with applied shadow map
*/
{
VkClearValue clearValues[2]; VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor; clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 }; clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues; renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport( VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D( VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 }; VkDeviceSize offsets[1] = { 0 };
@ -586,14 +553,14 @@ public:
if (displayCubeMap) if (displayCubeMap)
{ {
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.cubeMap); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.cubeMap);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.skybox.vertices.buffer, offsets); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.skybox.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.skybox.indexCount, 1, 0, 0, 0); vkCmdDrawIndexed(drawCmdBuffers[i], models.skybox.indexCount, 1, 0, 0, 0);
} }
else else
{ {
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.scene.vertices.buffer, offsets); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.scene.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.scene.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.scene.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.scene.indexCount, 1, 0, 0, 0); vkCmdDrawIndexed(drawCmdBuffers[i], models.scene.indexCount, 1, 0, 0, 0);
} }
@ -601,6 +568,7 @@ public:
drawUI(drawCmdBuffers[i]); drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
} }
@ -612,130 +580,49 @@ public:
models.scene.loadFromFile(getAssetPath() + "models/shadowscene_fire.dae", vertexLayout, 2.0f, vulkanDevice, queue); models.scene.loadFromFile(getAssetPath() + "models/shadowscene_fire.dae", vertexLayout, 2.0f, vulkanDevice, queue);
} }
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool() void setupDescriptorPool()
{ {
// Example uses three ubos and two image samplers // Example uses three ubos and two image samplers
std::vector<VkDescriptorPoolSize> poolSizes = std::vector<VkDescriptorPoolSize> poolSizes = {
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
}; };
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes.size(), poolSizes.data(), 3);
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
} }
void setupDescriptorSetLayout() void setupDescriptorSetLayout()
{ {
// Shared pipeline layout // Shared pipeline layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
{
// Binding 0 : Vertex shader uniform buffer // Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding( vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler (cube map) // Binding 1 : Fragment shader image sampler (cube map)
vks::initializers::descriptorSetLayoutBinding( vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
}; };
VkDescriptorSetLayoutCreateInfo descriptorLayout = VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), setLayoutBindings.size());
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// 3D scene pipeline layout // 3D scene pipeline layout
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene)); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene));
// Offscreen pipeline layout // Offscreen pipeline layout
// Push constants for cube map face view matrices // Push constants for cube map face view matrices
VkPushConstantRange pushConstantRange = VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0);
vks::initializers::pushConstantRange(
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(glm::mat4),
0);
// Push constant ranges are part of the pipeline layout // Push constant ranges are part of the pipeline layout
pPipelineLayoutCreateInfo.pushConstantRangeCount = 1; pPipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange; pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen)); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
} }
void setupDescriptorSets() void setupDescriptorSets()
{ {
VkDescriptorSetAllocateInfo allocInfo = VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
// 3D scene // 3D scene
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene)); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
// Image descriptor for the cube map // Image descriptor for the cube map
VkDescriptorImageInfo texDescriptor = VkDescriptorImageInfo texDescriptor =
vks::initializers::descriptorImageInfo( vks::initializers::descriptorImageInfo(
@ -743,34 +630,19 @@ public:
shadowCubeMap.view, shadowCubeMap.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
std::vector<VkWriteDescriptorSet> sceneDescriptorSets = std::vector<VkWriteDescriptorSet> sceneDescriptorSets = {
{
// Binding 0 : Vertex shader uniform buffer // Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet( vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler // Binding 1 : Fragment shader shadow sampler
vks::initializers::writeDescriptorSet( vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor)
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
}; };
vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL);
// Offscreen // Offscreen
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen)); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets = {
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer // Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet( vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor),
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.offscreen.descriptor),
}; };
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
} }
@ -831,52 +703,15 @@ public:
void preparePipelines() void preparePipelines()
{ {
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
vks::initializers::pipelineInputAssemblyStateCreateInfo( VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
0, VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VK_FALSE); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineRasterizationStateCreateInfo rasterizationState = VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
vks::initializers::pipelineRasterizationStateCreateInfo( std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VK_POLYGON_MODE_FILL, VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// 3D scene pipeline // 3D scene pipeline
// Load shaders // Load shaders
@ -885,13 +720,7 @@ public:
shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo = VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayouts.scene, renderPass, 0);
vks::initializers::pipelineCreateInfo(
pipelineLayouts.scene,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pColorBlendState = &colorBlendState;
@ -902,6 +731,22 @@ public:
pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.pStages = shaderStages.data();
// Vertex bindings and attributes
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3), // Texture coordinates
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5), // Color
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Normal
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCreateInfo.pVertexInputState = &vertexInputState;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene)); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene));
// Cube map display pipeline // Cube map display pipeline
@ -946,16 +791,10 @@ public:
void updateUniformBuffers() void updateUniformBuffers()
{ {
uboVSscene.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, zNear, zFar); uboVSscene.projection = camera.matrices.perspective;
uboVSscene.view = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, displayCubeMap ? 0.0f : zoom)); uboVSscene.view = camera.matrices.view;
uboVSscene.model = glm::mat4(1.0f); uboVSscene.model = glm::mat4(1.0f);
uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uboVSscene.lightPos = lightPos; uboVSscene.lightPos = lightPos;
memcpy(uniformBuffers.scene.mapped, &uboVSscene, sizeof(uboVSscene)); memcpy(uniformBuffers.scene.mapped, &uboVSscene, sizeof(uboVSscene));
} }
@ -963,44 +802,19 @@ public:
{ {
lightPos.x = sin(glm::radians(timer * 360.0f)) * 1.0f; lightPos.x = sin(glm::radians(timer * 360.0f)) * 1.0f;
lightPos.z = cos(glm::radians(timer * 360.0f)) * 1.0f; lightPos.z = cos(glm::radians(timer * 360.0f)) * 1.0f;
uboOffscreenVS.projection = glm::perspective((float)(M_PI / 2.0), 1.0f, zNear, zFar); uboOffscreenVS.projection = glm::perspective((float)(M_PI / 2.0), 1.0f, zNear, zFar);
uboOffscreenVS.view = glm::mat4(1.0f); uboOffscreenVS.view = glm::mat4(1.0f);
uboOffscreenVS.model = glm::translate(glm::mat4(1.0f), glm::vec3(-lightPos.x, -lightPos.y, -lightPos.z)); uboOffscreenVS.model = glm::translate(glm::mat4(1.0f), glm::vec3(-lightPos.x, -lightPos.y, -lightPos.z));
uboOffscreenVS.lightPos = lightPos; uboOffscreenVS.lightPos = lightPos;
memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS)); memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
} }
void draw() void draw()
{ {
VulkanExampleBase::prepareFrame(); VulkanExampleBase::prepareFrame();
// Offscreen rendering
// Wait for swap chain presentation to finish
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
// Signal ready with offscreen semaphore
submitInfo.pSignalSemaphores = &offscreenPass.semaphore;
// Submit work
submitInfo.commandBufferCount = 1; submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &offscreenPass.commandBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Scene rendering
// Wait for offscreen semaphore
submitInfo.pWaitSemaphores = &offscreenPass.semaphore;
// Signal ready with render complete semaphpre
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
// Submit work
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame(); VulkanExampleBase::submitFrame();
} }
@ -1008,7 +822,6 @@ public:
{ {
VulkanExampleBase::prepare(); VulkanExampleBase::prepare();
loadAssets(); loadAssets();
setupVertexDescriptions();
prepareUniformBuffers(); prepareUniformBuffers();
prepareCubeMap(); prepareCubeMap();
setupDescriptorSetLayout(); setupDescriptorSetLayout();
@ -1018,7 +831,6 @@ public:
setupDescriptorSets(); setupDescriptorSets();
prepareOffscreenFramebuffer(); prepareOffscreenFramebuffer();
buildCommandBuffers(); buildCommandBuffers();
buildOffscreenCommandBuffer();
prepared = true; prepared = true;
} }
@ -1027,19 +839,13 @@ public:
if (!prepared) if (!prepared)
return; return;
draw(); draw();
if (!paused) if (!paused || camera.updated)
{ {
updateUniformBufferOffscreen(); updateUniformBufferOffscreen();
updateUniformBuffers(); updateUniformBuffers();
} }
} }
virtual void viewChanged()
{
updateUniformBufferOffscreen();
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{ {
if (overlay->header("Settings")) { if (overlay->header("Settings")) {