Code cleanup

This commit is contained in:
Sascha Willems 2024-01-19 13:38:29 +01:00
parent 9ac41c788d
commit 54f25af1d4
2 changed files with 169 additions and 214 deletions

View file

@ -36,12 +36,12 @@ public:
vkglTF::Model floor;
} models;
struct {
struct UniformDataOffscreen {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec4 instancePos[3];
} uboOffscreenVS;
} uniformDataOffscreen;
struct Light {
glm::vec4 position;
@ -49,11 +49,11 @@ public:
float radius;
};
struct {
struct UniformDataComposition {
Light lights[6];
glm::vec4 viewPos;
int debugDisplayTarget = 0;
} uboComposition;
} uniformDataComposition;
struct {
vks::Buffer offscreen{ VK_NULL_HANDLE };
@ -583,8 +583,8 @@ public:
void preparePipelines()
{
// Pipeline layout
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
@ -648,19 +648,19 @@ public:
void prepareUniformBuffers()
{
// Offscreen vertex shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.offscreen, sizeof(uboOffscreenVS)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.offscreen, sizeof(UniformDataOffscreen)));
// Deferred fragment shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.composition, sizeof(uboComposition)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.composition, sizeof(UniformDataComposition)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.offscreen.map());
VK_CHECK_RESULT(uniformBuffers.composition.map());
// Setup instanced model positions
uboOffscreenVS.instancePos[0] = glm::vec4(0.0f);
uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f);
uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f);
uniformDataOffscreen.instancePos[0] = glm::vec4(0.0f);
uniformDataOffscreen.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f);
uniformDataOffscreen.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f);
// Update
updateUniformBufferOffscreen();
@ -670,64 +670,64 @@ public:
// Update matrices used for the offscreen rendering of the scene
void updateUniformBufferOffscreen()
{
uboOffscreenVS.projection = camera.matrices.perspective;
uboOffscreenVS.view = camera.matrices.view;
uboOffscreenVS.model = glm::mat4(1.0f);
memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
uniformDataOffscreen.projection = camera.matrices.perspective;
uniformDataOffscreen.view = camera.matrices.view;
uniformDataOffscreen.model = glm::mat4(1.0f);
memcpy(uniformBuffers.offscreen.mapped, &uniformDataOffscreen, sizeof(UniformDataOffscreen));
}
// Update lights and parameters passed to the composition shaders
void updateUniformBufferComposition()
{
// White
uboComposition.lights[0].position = glm::vec4(0.0f, 0.0f, 1.0f, 0.0f);
uboComposition.lights[0].color = glm::vec3(1.5f);
uboComposition.lights[0].radius = 15.0f * 0.25f;
uniformDataComposition.lights[0].position = glm::vec4(0.0f, 0.0f, 1.0f, 0.0f);
uniformDataComposition.lights[0].color = glm::vec3(1.5f);
uniformDataComposition.lights[0].radius = 15.0f * 0.25f;
// Red
uboComposition.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f);
uboComposition.lights[1].color = glm::vec3(1.0f, 0.0f, 0.0f);
uboComposition.lights[1].radius = 15.0f;
uniformDataComposition.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f);
uniformDataComposition.lights[1].color = glm::vec3(1.0f, 0.0f, 0.0f);
uniformDataComposition.lights[1].radius = 15.0f;
// Blue
uboComposition.lights[2].position = glm::vec4(2.0f, -1.0f, 0.0f, 0.0f);
uboComposition.lights[2].color = glm::vec3(0.0f, 0.0f, 2.5f);
uboComposition.lights[2].radius = 5.0f;
uniformDataComposition.lights[2].position = glm::vec4(2.0f, -1.0f, 0.0f, 0.0f);
uniformDataComposition.lights[2].color = glm::vec3(0.0f, 0.0f, 2.5f);
uniformDataComposition.lights[2].radius = 5.0f;
// Yellow
uboComposition.lights[3].position = glm::vec4(0.0f, -0.9f, 0.5f, 0.0f);
uboComposition.lights[3].color = glm::vec3(1.0f, 1.0f, 0.0f);
uboComposition.lights[3].radius = 2.0f;
uniformDataComposition.lights[3].position = glm::vec4(0.0f, -0.9f, 0.5f, 0.0f);
uniformDataComposition.lights[3].color = glm::vec3(1.0f, 1.0f, 0.0f);
uniformDataComposition.lights[3].radius = 2.0f;
// Green
uboComposition.lights[4].position = glm::vec4(0.0f, -0.5f, 0.0f, 0.0f);
uboComposition.lights[4].color = glm::vec3(0.0f, 1.0f, 0.2f);
uboComposition.lights[4].radius = 5.0f;
uniformDataComposition.lights[4].position = glm::vec4(0.0f, -0.5f, 0.0f, 0.0f);
uniformDataComposition.lights[4].color = glm::vec3(0.0f, 1.0f, 0.2f);
uniformDataComposition.lights[4].radius = 5.0f;
// Yellow
uboComposition.lights[5].position = glm::vec4(0.0f, -1.0f, 0.0f, 0.0f);
uboComposition.lights[5].color = glm::vec3(1.0f, 0.7f, 0.3f);
uboComposition.lights[5].radius = 25.0f;
uniformDataComposition.lights[5].position = glm::vec4(0.0f, -1.0f, 0.0f, 0.0f);
uniformDataComposition.lights[5].color = glm::vec3(1.0f, 0.7f, 0.3f);
uniformDataComposition.lights[5].radius = 25.0f;
// Animate the lights
if (!paused) {
uboComposition.lights[0].position.x = sin(glm::radians(360.0f * timer)) * 5.0f;
uboComposition.lights[0].position.z = cos(glm::radians(360.0f * timer)) * 5.0f;
uniformDataComposition.lights[0].position.x = sin(glm::radians(360.0f * timer)) * 5.0f;
uniformDataComposition.lights[0].position.z = cos(glm::radians(360.0f * timer)) * 5.0f;
uboComposition.lights[1].position.x = -4.0f + sin(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uboComposition.lights[1].position.z = 0.0f + cos(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uniformDataComposition.lights[1].position.x = -4.0f + sin(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uniformDataComposition.lights[1].position.z = 0.0f + cos(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uboComposition.lights[2].position.x = 4.0f + sin(glm::radians(360.0f * timer)) * 2.0f;
uboComposition.lights[2].position.z = 0.0f + cos(glm::radians(360.0f * timer)) * 2.0f;
uniformDataComposition.lights[2].position.x = 4.0f + sin(glm::radians(360.0f * timer)) * 2.0f;
uniformDataComposition.lights[2].position.z = 0.0f + cos(glm::radians(360.0f * timer)) * 2.0f;
uboComposition.lights[4].position.x = 0.0f + sin(glm::radians(360.0f * timer + 90.0f)) * 5.0f;
uboComposition.lights[4].position.z = 0.0f - cos(glm::radians(360.0f * timer + 45.0f)) * 5.0f;
uniformDataComposition.lights[4].position.x = 0.0f + sin(glm::radians(360.0f * timer + 90.0f)) * 5.0f;
uniformDataComposition.lights[4].position.z = 0.0f - cos(glm::radians(360.0f * timer + 45.0f)) * 5.0f;
uboComposition.lights[5].position.x = 0.0f + sin(glm::radians(-360.0f * timer + 135.0f)) * 10.0f;
uboComposition.lights[5].position.z = 0.0f - cos(glm::radians(-360.0f * timer - 45.0f)) * 10.0f;
uniformDataComposition.lights[5].position.x = 0.0f + sin(glm::radians(-360.0f * timer + 135.0f)) * 10.0f;
uniformDataComposition.lights[5].position.z = 0.0f - cos(glm::radians(-360.0f * timer - 45.0f)) * 10.0f;
}
// Current view position
uboComposition.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);
uniformDataComposition.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);
uboComposition.debugDisplayTarget = debugDisplayTarget;
uniformDataComposition.debugDisplayTarget = debugDisplayTarget;
memcpy(uniformBuffers.composition.mapped, &uboComposition, sizeof(uboComposition));
memcpy(uniformBuffers.composition.mapped, &uniformDataComposition, sizeof(UniformDataComposition));
}
void prepare()

View file

@ -1,7 +1,9 @@
/*
* Vulkan Example - Multi sampling with explicit resolve for deferred shading example
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
* This sample adds hardware accelerated multi sampling to the deferred rendering sample
*
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
@ -10,14 +12,6 @@
#include "VulkanFrameBuffer.hpp"
#include "VulkanglTFModel.h"
#if defined(__ANDROID__)
// Use max. screen dimension as deferred framebuffer size
#define FB_DIM std::max(width,height)
#else
#define FB_DIM 2048
#endif
class VulkanExample : public VulkanExampleBase
{
public:
@ -42,12 +36,12 @@ public:
vkglTF::Model background;
} models;
struct {
struct UniformDataOffscreen {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec4 instancePos[3];
} uboOffscreenVS;
} uniformDataOffscreen;
struct Light {
glm::vec4 position;
@ -55,39 +49,39 @@ public:
float radius;
};
struct {
struct UniformDataComposition {
Light lights[6];
glm::vec4 viewPos;
int32_t debugDisplayTarget = 0;
} uboComposition;
} uniformDataComposition;
struct {
vks::Buffer offscreen;
vks::Buffer composition;
vks::Buffer offscreen{ VK_NULL_HANDLE };
vks::Buffer composition{ VK_NULL_HANDLE };
} uniformBuffers;
struct {
VkPipeline deferred; // Deferred lighting calculation
VkPipeline deferredNoMSAA; // Deferred lighting calculation with explicit MSAA resolve
VkPipeline offscreen; // (Offscreen) scene rendering (fill G-Buffers)
VkPipeline offscreenSampleShading; // (Offscreen) scene rendering (fill G-Buffers) with sample shading rate enabled
VkPipeline deferred{ VK_NULL_HANDLE }; // Deferred lighting calculation
VkPipeline deferredNoMSAA{ VK_NULL_HANDLE }; // Deferred lighting calculation with explicit MSAA resolve
VkPipeline offscreen{ VK_NULL_HANDLE }; // (Offscreen) scene rendering (fill G-Buffers)
VkPipeline offscreenSampleShading{ VK_NULL_HANDLE }; // (Offscreen) scene rendering (fill G-Buffers) with sample shading rate enabled
} pipelines;
VkPipelineLayout pipelineLayout;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
struct {
VkDescriptorSet model;
VkDescriptorSet background;
} descriptorSets;
VkDescriptorSet model{ VK_NULL_HANDLE };
VkDescriptorSet background{ VK_NULL_HANDLE };
VkDescriptorSet composition{ VK_NULL_HANDLE };
} descriptorSets{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
vks::Framebuffer* offscreenframeBuffers;
vks::Framebuffer* offscreenframeBuffers{};
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
VkCommandBuffer offScreenCmdBuffer{ VK_NULL_HANDLE };
// Semaphore used to synchronize between offscreen and final scene rendering
VkSemaphore offscreenSemaphore = VK_NULL_HANDLE;
VkSemaphore offscreenSemaphore{ VK_NULL_HANDLE };
VulkanExample() : VulkanExampleBase()
{
@ -105,12 +99,9 @@ public:
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
if (device) {
// Frame buffers
if (offscreenframeBuffers)
{
if (offscreenframeBuffers) {
delete offscreenframeBuffers;
}
@ -134,6 +125,7 @@ public:
vkDestroySemaphore(device, offscreenSemaphore, nullptr);
}
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
@ -153,13 +145,19 @@ public:
{
offscreenframeBuffers = new vks::Framebuffer(vulkanDevice);
offscreenframeBuffers->width = FB_DIM;
offscreenframeBuffers->height = FB_DIM;
#if defined(__ANDROID__)
// Use max. screen dimension as deferred framebuffer size
offscreenframeBuffers->width = std::max(width, height);
offscreenframeBuffers->height = std::max(width, height);
#else
offscreenframeBuffers->width = 2048;
offscreenframeBuffers->height = 2048;
#endif
// Four attachments (3 color, 1 depth)
vks::AttachmentCreateInfo attachmentInfo = {};
attachmentInfo.width = FB_DIM;
attachmentInfo.height = FB_DIM;
attachmentInfo.width = offscreenframeBuffers->width;
attachmentInfo.height = offscreenframeBuffers->height;
attachmentInfo.layerCount = 1;
attachmentInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
attachmentInfo.imageSampleCount = sampleCount;
@ -281,7 +279,7 @@ public:
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.composition, 0, nullptr);
// Final composition as full screen quad
// Note: Also used for debug display if debugDisplayTarget > 0
@ -307,19 +305,17 @@ public:
textures.background.normalMap.loadFromFile(getAssetPath() + "textures/stonefloor02_normal_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void setupDescriptorPool()
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 9)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// Layout
// Deferred shading layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
@ -333,17 +329,10 @@ public:
// Binding 4 : Fragment shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 4),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Shared pipeline layout used by all pipelines
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
// Sets
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
@ -367,18 +356,18 @@ public:
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Deferred composition
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.composition));
writeDescriptorSets = {
// Binding 1: World space position texture
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorPosition),
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorPosition),
// Binding 2: World space normals texture
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormal),
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormal),
// Binding 3: Albedo texture
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &texDescriptorAlbedo),
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &texDescriptorAlbedo),
// Binding 4: Fragment shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4, &uniformBuffers.composition.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4, &uniformBuffers.composition.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Offscreen (scene)
@ -409,6 +398,11 @@ public:
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
@ -502,89 +496,77 @@ public:
void prepareUniformBuffers()
{
// Offscreen vertex shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.offscreen,
sizeof(uboOffscreenVS)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.offscreen, sizeof(UniformDataOffscreen)));
// Deferred fragment shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.composition,
sizeof(uboComposition)));;
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.composition, sizeof(UniformDataComposition)));;
// Map persistent
VK_CHECK_RESULT(uniformBuffers.offscreen.map());
VK_CHECK_RESULT(uniformBuffers.composition.map());
// Init some values
uboOffscreenVS.instancePos[0] = glm::vec4(0.0f);
uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f);
uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f);
uniformDataOffscreen.instancePos[0] = glm::vec4(0.0f);
uniformDataOffscreen.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f);
uniformDataOffscreen.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f);
// Update
updateUniformBufferOffscreen();
updateUniformBufferDeferredLights();
updateUniformBufferDeferred();
}
void updateUniformBufferOffscreen()
{
uboOffscreenVS.projection = camera.matrices.perspective;
uboOffscreenVS.view = camera.matrices.view;
uboOffscreenVS.model = glm::mat4(1.0f);
memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
uniformDataOffscreen.projection = camera.matrices.perspective;
uniformDataOffscreen.view = camera.matrices.view;
uniformDataOffscreen.model = glm::mat4(1.0f);
memcpy(uniformBuffers.offscreen.mapped, &uniformDataOffscreen, sizeof(UniformDataOffscreen));
}
// Update fragment shader light position uniform block
void updateUniformBufferDeferredLights()
// Update deferred composition fragment shader light position andparameters uniform block
void updateUniformBufferDeferred()
{
// White
uboComposition.lights[0].position = glm::vec4(0.0f, 0.0f, 1.0f, 0.0f);
uboComposition.lights[0].color = glm::vec3(1.5f);
uboComposition.lights[0].radius = 15.0f * 0.25f;
uniformDataComposition.lights[0].position = glm::vec4(0.0f, 0.0f, 5.0f, 0.0f);
uniformDataComposition.lights[0].color = glm::vec3(1.5f);
uniformDataComposition.lights[0].radius = 15.0f * 0.25f;
// Red
uboComposition.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f);
uboComposition.lights[1].color = glm::vec3(1.0f, 0.0f, 0.0f);
uboComposition.lights[1].radius = 15.0f;
uniformDataComposition.lights[1].position = glm::vec4(-2.30f, 0.0f, 1.05f, 0.0f);
uniformDataComposition.lights[1].color = glm::vec3(1.0f, 0.0f, 0.0f);
uniformDataComposition.lights[1].radius = 15.0f;
// Blue
uboComposition.lights[2].position = glm::vec4(2.0f, -1.0f, 0.0f, 0.0f);
uboComposition.lights[2].color = glm::vec3(0.0f, 0.0f, 2.5f);
uboComposition.lights[2].radius = 5.0f;
uniformDataComposition.lights[2].position = glm::vec4(4.0f, -1.0f, 2.0f, 0.0f);
uniformDataComposition.lights[2].color = glm::vec3(0.0f, 0.0f, 2.5f);
uniformDataComposition.lights[2].radius = 5.0f;
// Yellow
uboComposition.lights[3].position = glm::vec4(0.0f, -0.9f, 0.5f, 0.0f);
uboComposition.lights[3].color = glm::vec3(1.0f, 1.0f, 0.0f);
uboComposition.lights[3].radius = 2.0f;
uniformDataComposition.lights[3].position = glm::vec4(0.0f, -0.9f, 0.5f, 0.0f);
uniformDataComposition.lights[3].color = glm::vec3(1.0f, 1.0f, 0.0f);
uniformDataComposition.lights[3].radius = 2.0f;
// Green
uboComposition.lights[4].position = glm::vec4(0.0f, -0.5f, 0.0f, 0.0f);
uboComposition.lights[4].color = glm::vec3(0.0f, 1.0f, 0.2f);
uboComposition.lights[4].radius = 5.0f;
uniformDataComposition.lights[4].position = glm::vec4(5.0f, -0.5f, -3.53f, 0.0f);
uniformDataComposition.lights[4].color = glm::vec3(0.0f, 1.0f, 0.2f);
uniformDataComposition.lights[4].radius = 5.0f;
// Yellow
uboComposition.lights[5].position = glm::vec4(0.0f, -1.0f, 0.0f, 0.0f);
uboComposition.lights[5].color = glm::vec3(1.0f, 0.7f, 0.3f);
uboComposition.lights[5].radius = 25.0f;
uboComposition.lights[0].position.x = sin(glm::radians(360.0f * timer)) * 5.0f;
uboComposition.lights[0].position.z = cos(glm::radians(360.0f * timer)) * 5.0f;
uboComposition.lights[1].position.x = -4.0f + sin(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uboComposition.lights[1].position.z = 0.0f + cos(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uboComposition.lights[2].position.x = 4.0f + sin(glm::radians(360.0f * timer)) * 2.0f;
uboComposition.lights[2].position.z = 0.0f + cos(glm::radians(360.0f * timer)) * 2.0f;
uboComposition.lights[4].position.x = 0.0f + sin(glm::radians(360.0f * timer + 90.0f)) * 5.0f;
uboComposition.lights[4].position.z = 0.0f - cos(glm::radians(360.0f * timer + 45.0f)) * 5.0f;
uboComposition.lights[5].position.x = 0.0f + sin(glm::radians(-360.0f * timer + 135.0f)) * 10.0f;
uboComposition.lights[5].position.z = 0.0f - cos(glm::radians(-360.0f * timer - 45.0f)) * 10.0f;
uniformDataComposition.lights[5].position = glm::vec4(7.07f, -1.0f, 7.07f, 0.0f);
uniformDataComposition.lights[5].color = glm::vec3(1.0f, 0.7f, 0.3f);
uniformDataComposition.lights[5].radius = 25.0f;
// Current view position
uboComposition.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);
uboComposition.debugDisplayTarget = debugDisplayTarget;
uniformDataComposition.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);
uniformDataComposition.debugDisplayTarget = debugDisplayTarget;
memcpy(uniformBuffers.composition.mapped, &uboComposition, sizeof(uboComposition));
memcpy(uniformBuffers.composition.mapped, &uniformDataComposition, sizeof(UniformDataComposition));
}
void prepare()
{
VulkanExampleBase::prepare();
sampleCount = getMaxUsableSampleCount();
loadAssets();
deferredSetup();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
buildDeferredCommandBuffer();
prepared = true;
}
void draw()
@ -617,44 +599,19 @@ public:
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
sampleCount = getMaxUsableSampleCount();
loadAssets();
deferredSetup();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
buildDeferredCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
updateUniformBufferOffscreen();
draw();
if (camera.updated)
{
updateUniformBufferOffscreen();
}
}
virtual void viewChanged()
{
updateUniformBufferOffscreen();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->comboBox("Display", &debugDisplayTarget, { "Final composition", "Position", "Normals", "Albedo", "Specular" }))
{
updateUniformBufferDeferredLights();
if (overlay->comboBox("Display", &debugDisplayTarget, { "Final composition", "Position", "Normals", "Albedo", "Specular" })) {
updateUniformBufferDeferred();
}
if (overlay->checkBox("MSAA", &useMSAA)) {
buildCommandBuffers();
@ -671,9 +628,7 @@ public:
VkSampleCountFlagBits getMaxUsableSampleCount()
{
VkSampleCountFlags counts = std::min(deviceProperties.limits.framebufferColorSampleCounts, deviceProperties.limits.framebufferDepthSampleCounts);
if (counts & VK_SAMPLE_COUNT_64_BIT) { return VK_SAMPLE_COUNT_64_BIT; }
if (counts & VK_SAMPLE_COUNT_32_BIT) { return VK_SAMPLE_COUNT_32_BIT; }
if (counts & VK_SAMPLE_COUNT_16_BIT) { return VK_SAMPLE_COUNT_16_BIT; }
// Note: Vulkan offers up to 64 bits, but we don't want to go higher than 8xMSAA in this sample)
if (counts & VK_SAMPLE_COUNT_8_BIT) { return VK_SAMPLE_COUNT_8_BIT; }
if (counts & VK_SAMPLE_COUNT_4_BIT) { return VK_SAMPLE_COUNT_4_BIT; }
if (counts & VK_SAMPLE_COUNT_2_BIT) { return VK_SAMPLE_COUNT_2_BIT; }