Add ray traced glTF sample (#1083)
* Started working on a ray tracing glTF sample * Started working on a ray tracing glTF sample Added textures using descriptor indexing * Frame accumulation Pass glTF node transforms to BLAS build * Shader cleanup * Code cleanup, flip Y using TLAS transform matrix * Create AS for all primitives in the gltf scene * Remove unused variables * Added missing shaders * Minor cleanup
This commit is contained in:
parent
e006185ca0
commit
5962189427
18 changed files with 1109 additions and 2 deletions
790
examples/raytracinggltf/raytracinggltf.cpp
Normal file
790
examples/raytracinggltf/raytracinggltf.cpp
Normal file
|
|
@ -0,0 +1,790 @@
|
|||
/*
|
||||
* Vulkan Example - Rendering a glTF model using hardware accelerated ray tracing example /for proper transparency, this sample does frame accumulation)
|
||||
*
|
||||
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
/*
|
||||
* @todo
|
||||
*/
|
||||
|
||||
#include "VulkanRaytracingSample.h"
|
||||
#define VK_GLTF_MATERIAL_IDS
|
||||
#include "VulkanglTFModel.h"
|
||||
|
||||
class VulkanExample : public VulkanRaytracingSample
|
||||
{
|
||||
public:
|
||||
AccelerationStructure bottomLevelAS{};
|
||||
AccelerationStructure topLevelAS{};
|
||||
|
||||
vks::Buffer vertexBuffer;
|
||||
vks::Buffer indexBuffer;
|
||||
uint32_t indexCount;
|
||||
vks::Buffer transformBuffer;
|
||||
|
||||
struct GeometryNode {
|
||||
uint64_t vertexBufferDeviceAddress;
|
||||
uint64_t indexBufferDeviceAddress;
|
||||
int32_t textureIndexBaseColor;
|
||||
int32_t textureIndexOcclusion;
|
||||
};
|
||||
vks::Buffer geometryNodesBuffer;
|
||||
|
||||
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
|
||||
struct ShaderBindingTables {
|
||||
ShaderBindingTable raygen;
|
||||
ShaderBindingTable miss;
|
||||
ShaderBindingTable hit;
|
||||
} shaderBindingTables;
|
||||
|
||||
vks::Texture2D texture;
|
||||
|
||||
struct UniformData {
|
||||
glm::mat4 viewInverse;
|
||||
glm::mat4 projInverse;
|
||||
uint32_t frame{ 0 };
|
||||
} uniformData;
|
||||
vks::Buffer ubo;
|
||||
|
||||
VkPipeline pipeline;
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkDescriptorSet descriptorSet;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
vkglTF::Model model;
|
||||
|
||||
VkPhysicalDeviceDescriptorIndexingFeaturesEXT physicalDeviceDescriptorIndexingFeatures{};
|
||||
|
||||
VulkanExample() : VulkanRaytracingSample()
|
||||
{
|
||||
title = "Ray tracing glTF model";
|
||||
settings.overlay = false;
|
||||
camera.type = Camera::CameraType::lookat;
|
||||
//camera.type = Camera::CameraType::firstperson;
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
||||
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
|
||||
camera.setTranslation(glm::vec3(0.0f, -0.1f, -1.0f));
|
||||
|
||||
enableExtensions();
|
||||
|
||||
// Buffer device address requires the 64-bit integer feature to be enabled
|
||||
enabledFeatures.shaderInt64 = VK_TRUE;
|
||||
|
||||
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
|
||||
physicalDeviceDescriptorIndexingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT;
|
||||
physicalDeviceDescriptorIndexingFeatures.shaderSampledImageArrayNonUniformIndexing = VK_TRUE;
|
||||
physicalDeviceDescriptorIndexingFeatures.runtimeDescriptorArray = VK_TRUE;
|
||||
physicalDeviceDescriptorIndexingFeatures.descriptorBindingVariableDescriptorCount = VK_TRUE;
|
||||
|
||||
deviceCreatepNextChain = &physicalDeviceDescriptorIndexingFeatures;
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
vkDestroyPipeline(device, pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
deleteStorageImage();
|
||||
deleteAccelerationStructure(bottomLevelAS);
|
||||
deleteAccelerationStructure(topLevelAS);
|
||||
vertexBuffer.destroy();
|
||||
indexBuffer.destroy();
|
||||
transformBuffer.destroy();
|
||||
shaderBindingTables.raygen.destroy();
|
||||
shaderBindingTables.miss.destroy();
|
||||
shaderBindingTables.hit.destroy();
|
||||
ubo.destroy();
|
||||
}
|
||||
|
||||
void createAccelerationStructureBuffer(AccelerationStructure &accelerationStructure, VkAccelerationStructureBuildSizesInfoKHR buildSizeInfo)
|
||||
{
|
||||
VkBufferCreateInfo bufferCreateInfo{};
|
||||
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
||||
bufferCreateInfo.size = buildSizeInfo.accelerationStructureSize;
|
||||
bufferCreateInfo.usage = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
|
||||
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &accelerationStructure.buffer));
|
||||
VkMemoryRequirements memoryRequirements{};
|
||||
vkGetBufferMemoryRequirements(device, accelerationStructure.buffer, &memoryRequirements);
|
||||
VkMemoryAllocateFlagsInfo memoryAllocateFlagsInfo{};
|
||||
memoryAllocateFlagsInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO;
|
||||
memoryAllocateFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
|
||||
VkMemoryAllocateInfo memoryAllocateInfo{};
|
||||
memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
||||
memoryAllocateInfo.pNext = &memoryAllocateFlagsInfo;
|
||||
memoryAllocateInfo.allocationSize = memoryRequirements.size;
|
||||
memoryAllocateInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocateInfo, nullptr, &accelerationStructure.memory));
|
||||
VK_CHECK_RESULT(vkBindBufferMemory(device, accelerationStructure.buffer, accelerationStructure.memory, 0));
|
||||
}
|
||||
|
||||
/*
|
||||
Create the bottom level acceleration structure that contains the scene's actual geometry (vertices, triangles)
|
||||
*/
|
||||
void createBottomLevelAccelerationStructure()
|
||||
{
|
||||
// Use transform matrices from the glTF nodes
|
||||
std::vector<VkTransformMatrixKHR> transformMatrices{};
|
||||
for (auto node : model.linearNodes) {
|
||||
if (node->mesh) {
|
||||
for (auto primitive : node->mesh->primitives) {
|
||||
if (primitive->indexCount > 0) {
|
||||
VkTransformMatrixKHR transformMatrix{};
|
||||
auto m = glm::mat3x4(glm::transpose(node->getMatrix()));
|
||||
memcpy(&transformMatrix, (void*)&m, sizeof(glm::mat3x4));
|
||||
transformMatrices.push_back(transformMatrix);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Transform buffer
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&transformBuffer,
|
||||
static_cast<uint32_t>(transformMatrices.size()) * sizeof(VkTransformMatrixKHR),
|
||||
transformMatrices.data()));
|
||||
|
||||
// Build
|
||||
// One geometry per glTF node, so we can index materials using gl_GeometryIndexEXT
|
||||
uint32_t maxPrimCount{ 0 };
|
||||
std::vector<uint32_t> maxPrimitiveCounts{};
|
||||
std::vector<VkAccelerationStructureGeometryKHR> geometries{};
|
||||
std::vector<VkAccelerationStructureBuildRangeInfoKHR> buildRangeInfos{};
|
||||
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> pBuildRangeInfos{};
|
||||
std::vector<GeometryNode> geometryNodes{};
|
||||
for (auto node : model.linearNodes) {
|
||||
if (node->mesh) {
|
||||
for (auto primitive : node->mesh->primitives) {
|
||||
if (primitive->indexCount > 0) {
|
||||
VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{};
|
||||
VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{};
|
||||
VkDeviceOrHostAddressConstKHR transformBufferDeviceAddress{};
|
||||
|
||||
vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(model.vertices.buffer);// +primitive->firstVertex * sizeof(vkglTF::Vertex);
|
||||
indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(model.indices.buffer) + primitive->firstIndex * sizeof(uint32_t);
|
||||
transformBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(transformBuffer.buffer) + static_cast<uint32_t>(geometryNodes.size()) * sizeof(VkTransformMatrixKHR);
|
||||
|
||||
VkAccelerationStructureGeometryKHR geometry{};
|
||||
geometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
|
||||
geometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
|
||||
geometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR;
|
||||
geometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
|
||||
geometry.geometry.triangles.vertexData = vertexBufferDeviceAddress;
|
||||
geometry.geometry.triangles.maxVertex = model.vertices.count;
|
||||
//geometry.geometry.triangles.maxVertex = primitive->vertexCount;
|
||||
geometry.geometry.triangles.vertexStride = sizeof(vkglTF::Vertex);
|
||||
geometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
|
||||
geometry.geometry.triangles.indexData = indexBufferDeviceAddress;
|
||||
geometry.geometry.triangles.transformData = transformBufferDeviceAddress;
|
||||
geometries.push_back(geometry);
|
||||
maxPrimitiveCounts.push_back(primitive->indexCount / 3);
|
||||
maxPrimCount += primitive->indexCount / 3;
|
||||
|
||||
VkAccelerationStructureBuildRangeInfoKHR buildRangeInfo{};
|
||||
buildRangeInfo.firstVertex = 0;
|
||||
buildRangeInfo.primitiveOffset = 0; // primitive->firstIndex * sizeof(uint32_t);
|
||||
buildRangeInfo.primitiveCount = primitive->indexCount / 3;
|
||||
buildRangeInfo.transformOffset = 0;
|
||||
buildRangeInfos.push_back(buildRangeInfo);
|
||||
|
||||
GeometryNode geometryNode{};
|
||||
geometryNode.vertexBufferDeviceAddress = vertexBufferDeviceAddress.deviceAddress;
|
||||
geometryNode.indexBufferDeviceAddress = indexBufferDeviceAddress.deviceAddress;
|
||||
geometryNode.textureIndexBaseColor = primitive->material.baseColorTexture->index;
|
||||
geometryNode.textureIndexOcclusion = primitive->material.occlusionTexture ? primitive->material.occlusionTexture->index : -1;
|
||||
// @todo: map material id to global texture array
|
||||
geometryNodes.push_back(geometryNode);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto& rangeInfo : buildRangeInfos) {
|
||||
pBuildRangeInfos.push_back(&rangeInfo);
|
||||
}
|
||||
|
||||
// @todo: stage to device
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&geometryNodesBuffer,
|
||||
static_cast<uint32_t>(geometryNodes.size()) * sizeof(GeometryNode),
|
||||
geometryNodes.data()));
|
||||
|
||||
// Get size info
|
||||
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo{};
|
||||
accelerationStructureBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
|
||||
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
|
||||
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
||||
accelerationStructureBuildGeometryInfo.geometryCount = geometries.size();
|
||||
accelerationStructureBuildGeometryInfo.pGeometries = geometries.data();
|
||||
|
||||
const uint32_t numTriangles = maxPrimitiveCounts[0];
|
||||
|
||||
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo{};
|
||||
accelerationStructureBuildSizesInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR;
|
||||
vkGetAccelerationStructureBuildSizesKHR(
|
||||
device,
|
||||
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
|
||||
&accelerationStructureBuildGeometryInfo,
|
||||
maxPrimitiveCounts.data(),
|
||||
&accelerationStructureBuildSizesInfo);
|
||||
|
||||
createAccelerationStructureBuffer(bottomLevelAS, accelerationStructureBuildSizesInfo);
|
||||
|
||||
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo{};
|
||||
accelerationStructureCreateInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
|
||||
accelerationStructureCreateInfo.buffer = bottomLevelAS.buffer;
|
||||
accelerationStructureCreateInfo.size = accelerationStructureBuildSizesInfo.accelerationStructureSize;
|
||||
accelerationStructureCreateInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
|
||||
vkCreateAccelerationStructureKHR(device, &accelerationStructureCreateInfo, nullptr, &bottomLevelAS.handle);
|
||||
|
||||
// Create a small scratch buffer used during build of the bottom level acceleration structure
|
||||
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
|
||||
|
||||
accelerationStructureBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
|
||||
accelerationStructureBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
|
||||
accelerationStructureBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
|
||||
|
||||
const VkAccelerationStructureBuildRangeInfoKHR* buildOffsetInfo = buildRangeInfos.data();
|
||||
|
||||
// Build the acceleration structure on the device via a one-time command buffer submission
|
||||
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
|
||||
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
vkCmdBuildAccelerationStructuresKHR(
|
||||
commandBuffer,
|
||||
1,
|
||||
&accelerationStructureBuildGeometryInfo,
|
||||
pBuildRangeInfos.data());
|
||||
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
|
||||
|
||||
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
|
||||
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
|
||||
accelerationDeviceAddressInfo.accelerationStructure = bottomLevelAS.handle;
|
||||
bottomLevelAS.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
|
||||
|
||||
deleteScratchBuffer(scratchBuffer);
|
||||
}
|
||||
|
||||
/*
|
||||
The top level acceleration structure contains the scene's object instances
|
||||
*/
|
||||
void createTopLevelAccelerationStructure()
|
||||
{
|
||||
// We flip the matrix [1][1] = -1.0f to accomodate for the glTF up vector
|
||||
VkTransformMatrixKHR transformMatrix = {
|
||||
1.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, -1.0f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, 1.0f, 0.0f };
|
||||
|
||||
VkAccelerationStructureInstanceKHR instance{};
|
||||
instance.transform = transformMatrix;
|
||||
instance.instanceCustomIndex = 0;
|
||||
instance.mask = 0xFF;
|
||||
instance.instanceShaderBindingTableRecordOffset = 0;
|
||||
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
|
||||
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
|
||||
|
||||
// Buffer for instance data
|
||||
vks::Buffer instancesBuffer;
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&instancesBuffer,
|
||||
sizeof(VkAccelerationStructureInstanceKHR),
|
||||
&instance));
|
||||
|
||||
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
|
||||
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
|
||||
|
||||
VkAccelerationStructureGeometryKHR accelerationStructureGeometry{};
|
||||
accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
|
||||
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
|
||||
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
|
||||
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
|
||||
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
|
||||
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
|
||||
|
||||
// Get size info
|
||||
/*
|
||||
The pSrcAccelerationStructure, dstAccelerationStructure, and mode members of pBuildInfo are ignored. Any VkDeviceOrHostAddressKHR members of pBuildInfo are ignored by this command, except that the hostAddress member of VkAccelerationStructureGeometryTrianglesDataKHR::transformData will be examined to check if it is NULL.*
|
||||
*/
|
||||
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo{};
|
||||
accelerationStructureBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
|
||||
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
|
||||
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
||||
accelerationStructureBuildGeometryInfo.geometryCount = 1;
|
||||
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
||||
|
||||
uint32_t primitive_count = 1;
|
||||
|
||||
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo{};
|
||||
accelerationStructureBuildSizesInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR;
|
||||
vkGetAccelerationStructureBuildSizesKHR(
|
||||
device,
|
||||
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
|
||||
&accelerationStructureBuildGeometryInfo,
|
||||
&primitive_count,
|
||||
&accelerationStructureBuildSizesInfo);
|
||||
|
||||
createAccelerationStructureBuffer(topLevelAS, accelerationStructureBuildSizesInfo);
|
||||
|
||||
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo{};
|
||||
accelerationStructureCreateInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
|
||||
accelerationStructureCreateInfo.buffer = topLevelAS.buffer;
|
||||
accelerationStructureCreateInfo.size = accelerationStructureBuildSizesInfo.accelerationStructureSize;
|
||||
accelerationStructureCreateInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
|
||||
vkCreateAccelerationStructureKHR(device, &accelerationStructureCreateInfo, nullptr, &topLevelAS.handle);
|
||||
|
||||
// Create a small scratch buffer used during build of the top level acceleration structure
|
||||
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
|
||||
|
||||
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{};
|
||||
accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
|
||||
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
|
||||
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
||||
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
|
||||
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
|
||||
accelerationBuildGeometryInfo.geometryCount = 1;
|
||||
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
||||
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
|
||||
|
||||
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
|
||||
accelerationStructureBuildRangeInfo.primitiveCount = 1;
|
||||
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
|
||||
accelerationStructureBuildRangeInfo.firstVertex = 0;
|
||||
accelerationStructureBuildRangeInfo.transformOffset = 0;
|
||||
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
|
||||
|
||||
// Build the acceleration structure on the device via a one-time command buffer submission
|
||||
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
|
||||
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
vkCmdBuildAccelerationStructuresKHR(
|
||||
commandBuffer,
|
||||
1,
|
||||
&accelerationBuildGeometryInfo,
|
||||
accelerationBuildStructureRangeInfos.data());
|
||||
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
|
||||
|
||||
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
|
||||
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
|
||||
accelerationDeviceAddressInfo.accelerationStructure = topLevelAS.handle;
|
||||
topLevelAS.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
|
||||
|
||||
deleteScratchBuffer(scratchBuffer);
|
||||
instancesBuffer.destroy();
|
||||
}
|
||||
|
||||
/*
|
||||
Create the Shader Binding Tables that binds the programs and top-level acceleration structure
|
||||
|
||||
SBT Layout used in this sample:
|
||||
|
||||
/-----------\
|
||||
| raygen |
|
||||
|-----------|
|
||||
| miss + shadow |
|
||||
|-----------|
|
||||
| hit + any |
|
||||
\-----------/
|
||||
|
||||
*/
|
||||
void createShaderBindingTables() {
|
||||
const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize;
|
||||
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
|
||||
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
|
||||
const uint32_t sbtSize = groupCount * handleSizeAligned;
|
||||
|
||||
std::vector<uint8_t> shaderHandleStorage(sbtSize);
|
||||
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
|
||||
|
||||
createShaderBindingTable(shaderBindingTables.raygen, 1);
|
||||
createShaderBindingTable(shaderBindingTables.miss, 2);
|
||||
createShaderBindingTable(shaderBindingTables.hit, 1);
|
||||
|
||||
// Copy handles
|
||||
memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize);
|
||||
// We are using two miss shaders, so we need to get two handles for the miss shader binding table
|
||||
memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize * 2);
|
||||
memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 3, handleSize);
|
||||
}
|
||||
|
||||
/*
|
||||
Create our ray tracing pipeline
|
||||
*/
|
||||
void createRayTracingPipeline()
|
||||
{
|
||||
// @todo:
|
||||
uint32_t imageCount{ 0 };
|
||||
imageCount = static_cast<uint32_t>(model.textures.size());
|
||||
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0: Top level acceleration structure
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0),
|
||||
// Binding 1: Ray tracing result image
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1),
|
||||
// Binding 2: Uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR, 2),
|
||||
// Binding 3: Texture image
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, 3),
|
||||
// Binding 4: Geometry node information SSBO
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, 4),
|
||||
// Binding 5: All images used by the glTF model
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, 5, imageCount)
|
||||
};
|
||||
|
||||
// Unbound set
|
||||
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT setLayoutBindingFlags{};
|
||||
setLayoutBindingFlags.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT;
|
||||
setLayoutBindingFlags.bindingCount = 6;
|
||||
std::vector<VkDescriptorBindingFlagsEXT> descriptorBindingFlags = {
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
|
||||
};
|
||||
setLayoutBindingFlags.pBindingFlags = descriptorBindingFlags.data();
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
descriptorSetLayoutCI.pNext = &setLayoutBindingFlags;
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
|
||||
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
||||
|
||||
/*
|
||||
Setup ray tracing shader groups
|
||||
*/
|
||||
std::vector<VkPipelineShaderStageCreateInfo> shaderStages;
|
||||
|
||||
// Ray generation group
|
||||
{
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
|
||||
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
||||
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
||||
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
|
||||
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroups.push_back(shaderGroup);
|
||||
}
|
||||
|
||||
// Miss group
|
||||
{
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
|
||||
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
||||
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
||||
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
|
||||
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroups.push_back(shaderGroup);
|
||||
// Second shader for shadows
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/shadow.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
|
||||
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroups.push_back(shaderGroup);
|
||||
}
|
||||
|
||||
// Closest hit group for doing texture lookups
|
||||
{
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
|
||||
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
||||
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
||||
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
|
||||
shaderGroup.generalShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.closestHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
|
||||
// This group also uses an anyhit shader for doing transparency (see anyhit.rahit for details)
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/anyhit.rahit.spv", VK_SHADER_STAGE_ANY_HIT_BIT_KHR));
|
||||
shaderGroup.anyHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroups.push_back(shaderGroup);
|
||||
}
|
||||
|
||||
/*
|
||||
Create the ray tracing pipeline
|
||||
*/
|
||||
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI{};
|
||||
rayTracingPipelineCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR;
|
||||
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
rayTracingPipelineCI.pStages = shaderStages.data();
|
||||
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
|
||||
rayTracingPipelineCI.pGroups = shaderGroups.data();
|
||||
rayTracingPipelineCI.maxPipelineRayRecursionDepth = 1;
|
||||
rayTracingPipelineCI.layout = pipelineLayout;
|
||||
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
|
||||
}
|
||||
|
||||
/*
|
||||
Create the descriptor sets used for the ray tracing dispatch
|
||||
*/
|
||||
void createDescriptorSets()
|
||||
{
|
||||
// @todo
|
||||
uint32_t imageCount{ 0 };
|
||||
imageCount = static_cast<uint32_t>(model.textures.size());
|
||||
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
|
||||
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
|
||||
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 },
|
||||
{ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1 }
|
||||
};
|
||||
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
|
||||
|
||||
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT variableDescriptorCountAllocInfo{};
|
||||
uint32_t variableDescCounts[] = { imageCount };
|
||||
variableDescriptorCountAllocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT;
|
||||
variableDescriptorCountAllocInfo.descriptorSetCount = 1;
|
||||
variableDescriptorCountAllocInfo.pDescriptorCounts = variableDescCounts;
|
||||
|
||||
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
||||
descriptorSetAllocateInfo.pNext = &variableDescriptorCountAllocInfo;
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
|
||||
|
||||
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR();
|
||||
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
|
||||
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
|
||||
|
||||
VkWriteDescriptorSet accelerationStructureWrite{};
|
||||
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
||||
// The specialized acceleration structure descriptor has to be chained
|
||||
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
|
||||
accelerationStructureWrite.dstSet = descriptorSet;
|
||||
accelerationStructureWrite.dstBinding = 0;
|
||||
accelerationStructureWrite.descriptorCount = 1;
|
||||
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
|
||||
|
||||
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||
// Binding 0: Top level acceleration structure
|
||||
accelerationStructureWrite,
|
||||
// Binding 1: Ray tracing result image
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor),
|
||||
// Binding 2: Uniform data
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor),
|
||||
// Binding 4: Geometry node information SSBO
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4, &geometryNodesBuffer.descriptor),
|
||||
};
|
||||
|
||||
// Image descriptors for the image array
|
||||
std::vector<VkDescriptorImageInfo> textureDescriptors{};
|
||||
for (auto texture : model.textures) {
|
||||
VkDescriptorImageInfo descriptor{};
|
||||
descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
descriptor.sampler = texture.sampler;;
|
||||
descriptor.imageView = texture.view;
|
||||
textureDescriptors.push_back(descriptor);
|
||||
}
|
||||
|
||||
VkWriteDescriptorSet writeDescriptorImgArray{};
|
||||
writeDescriptorImgArray.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
||||
writeDescriptorImgArray.dstBinding = 5;
|
||||
writeDescriptorImgArray.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
||||
writeDescriptorImgArray.descriptorCount = imageCount;
|
||||
writeDescriptorImgArray.dstSet = descriptorSet;
|
||||
writeDescriptorImgArray.pImageInfo = textureDescriptors.data();
|
||||
writeDescriptorSets.push_back(writeDescriptorImgArray);
|
||||
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
|
||||
}
|
||||
|
||||
/*
|
||||
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
|
||||
*/
|
||||
void createUniformBuffer()
|
||||
{
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&ubo,
|
||||
sizeof(uniformData),
|
||||
&uniformData));
|
||||
VK_CHECK_RESULT(ubo.map());
|
||||
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
/*
|
||||
If the window has been resized, we need to recreate the storage image and it's descriptor
|
||||
*/
|
||||
void handleResize()
|
||||
{
|
||||
// Recreate image
|
||||
createStorageImage(swapChain.colorFormat, { width, height, 1 });
|
||||
// Update descriptor
|
||||
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
|
||||
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
|
||||
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
|
||||
resized = false;
|
||||
}
|
||||
|
||||
/*
|
||||
Command buffer generation
|
||||
*/
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
if (resized)
|
||||
{
|
||||
handleResize();
|
||||
}
|
||||
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
/*
|
||||
Dispatch the ray tracing commands
|
||||
*/
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
|
||||
|
||||
VkStridedDeviceAddressRegionKHR emptySbtEntry = {};
|
||||
vkCmdTraceRaysKHR(
|
||||
drawCmdBuffers[i],
|
||||
&shaderBindingTables.raygen.stridedDeviceAddressRegion,
|
||||
&shaderBindingTables.miss.stridedDeviceAddressRegion,
|
||||
&shaderBindingTables.hit.stridedDeviceAddressRegion,
|
||||
&emptySbtEntry,
|
||||
width,
|
||||
height,
|
||||
1);
|
||||
|
||||
/*
|
||||
Copy ray tracing output to swap chain image
|
||||
*/
|
||||
|
||||
// Prepare current swap chain image as transfer destination
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
swapChain.images[i],
|
||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
subresourceRange);
|
||||
|
||||
// Prepare ray tracing output image as transfer source
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
storageImage.image,
|
||||
VK_IMAGE_LAYOUT_GENERAL,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
||||
subresourceRange);
|
||||
|
||||
VkImageCopy copyRegion{};
|
||||
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
|
||||
copyRegion.srcOffset = { 0, 0, 0 };
|
||||
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
|
||||
copyRegion.dstOffset = { 0, 0, 0 };
|
||||
copyRegion.extent = { width, height, 1 };
|
||||
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region);
|
||||
|
||||
// Transition swap chain image back for presentation
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
swapChain.images[i],
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
||||
subresourceRange);
|
||||
|
||||
// Transition ray tracing output image back to general layout
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
storageImage.image,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
||||
VK_IMAGE_LAYOUT_GENERAL,
|
||||
subresourceRange);
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
|
||||
uniformData.viewInverse = glm::inverse(camera.matrices.view);
|
||||
uniformData.frame++;
|
||||
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
|
||||
}
|
||||
|
||||
void getEnabledFeatures()
|
||||
{
|
||||
// Enable features required for ray tracing using feature chaining via pNext
|
||||
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
|
||||
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
|
||||
|
||||
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
|
||||
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
|
||||
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
|
||||
|
||||
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
|
||||
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
|
||||
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
|
||||
|
||||
deviceCreatepNextChain = &enabledAccelerationStructureFeatures;
|
||||
|
||||
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
||||
}
|
||||
|
||||
void loadAssets()
|
||||
{
|
||||
vkglTF::memoryPropertyFlags = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
|
||||
model.loadFromFile(getAssetPath() + "models/FlightHelmet/glTF/FlightHelmet.gltf", vulkanDevice, queue);
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanRaytracingSample::prepare();
|
||||
|
||||
loadAssets();
|
||||
|
||||
// Create the acceleration structures used to render the ray traced scene
|
||||
createBottomLevelAccelerationStructure();
|
||||
createTopLevelAccelerationStructure();
|
||||
|
||||
createStorageImage(swapChain.colorFormat, { width, height, 1 });
|
||||
createUniformBuffer();
|
||||
createRayTracingPipeline();
|
||||
createShaderBindingTables();
|
||||
createDescriptorSets();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VulkanExampleBase::prepareFrame();
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
updateUniformBuffers();
|
||||
draw();
|
||||
}
|
||||
|
||||
virtual void viewChanged()
|
||||
{
|
||||
uniformData.frame = -1;
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue