Add ray traced glTF sample (#1083)

* Started working on a ray tracing glTF sample

* Started working on a ray tracing glTF sample

Added textures using descriptor indexing

* Frame accumulation

Pass glTF node transforms to BLAS build

* Shader cleanup

* Code cleanup, flip Y using TLAS transform matrix

* Create AS for all primitives in the gltf scene

* Remove unused variables

* Added missing shaders

* Minor cleanup
This commit is contained in:
Sascha Willems 2023-11-01 10:55:33 +01:00 committed by GitHub
parent e006185ca0
commit 5962189427
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 1109 additions and 2 deletions

View file

@ -1,4 +1,3 @@
/* /*
* Vulkan glTF model and texture loading class based on tinyglTF (https://github.com/syoyo/tinygltf) * Vulkan glTF model and texture loading class based on tinyglTF (https://github.com/syoyo/tinygltf)
* *
@ -987,6 +986,7 @@ void vkglTF::Model::loadImages(tinygltf::Model &gltfModel, vks::VulkanDevice *de
for (tinygltf::Image &image : gltfModel.images) { for (tinygltf::Image &image : gltfModel.images) {
vkglTF::Texture texture; vkglTF::Texture texture;
texture.fromglTfImage(image, path, device, transferQueue); texture.fromglTfImage(image, path, device, transferQueue);
texture.index = static_cast<uint32_t>(textures.size());
textures.push_back(texture); textures.push_back(texture);
} }
// Create an empty texture to be used for empty material images // Create an empty texture to be used for empty material images

View file

@ -63,6 +63,7 @@ namespace vkglTF
uint32_t layerCount; uint32_t layerCount;
VkDescriptorImageInfo descriptor; VkDescriptorImageInfo descriptor;
VkSampler sampler; VkSampler sampler;
uint32_t index;
void updateDescriptor(); void updateDescriptor();
void destroy(); void destroy();
void fromglTfImage(tinygltf::Image& gltfimage, std::string path, vks::VulkanDevice* device, VkQueue copyQueue); void fromglTfImage(tinygltf::Image& gltfimage, std::string path, vks::VulkanDevice* device, VkQueue copyQueue);

View file

@ -134,6 +134,7 @@ set(EXAMPLES
rayquery rayquery
raytracingbasic raytracingbasic
raytracingcallable raytracingcallable
raytracinggltf
raytracingintersection raytracingintersection
raytracingreflections raytracingreflections
raytracingsbtdata raytracingsbtdata

View file

@ -0,0 +1,790 @@
/*
* Vulkan Example - Rendering a glTF model using hardware accelerated ray tracing example /for proper transparency, this sample does frame accumulation)
*
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
/*
* @todo
*/
#include "VulkanRaytracingSample.h"
#define VK_GLTF_MATERIAL_IDS
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanRaytracingSample
{
public:
AccelerationStructure bottomLevelAS{};
AccelerationStructure topLevelAS{};
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer transformBuffer;
struct GeometryNode {
uint64_t vertexBufferDeviceAddress;
uint64_t indexBufferDeviceAddress;
int32_t textureIndexBaseColor;
int32_t textureIndexOcclusion;
};
vks::Buffer geometryNodesBuffer;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
struct ShaderBindingTables {
ShaderBindingTable raygen;
ShaderBindingTable miss;
ShaderBindingTable hit;
} shaderBindingTables;
vks::Texture2D texture;
struct UniformData {
glm::mat4 viewInverse;
glm::mat4 projInverse;
uint32_t frame{ 0 };
} uniformData;
vks::Buffer ubo;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
vkglTF::Model model;
VkPhysicalDeviceDescriptorIndexingFeaturesEXT physicalDeviceDescriptorIndexingFeatures{};
VulkanExample() : VulkanRaytracingSample()
{
title = "Ray tracing glTF model";
settings.overlay = false;
camera.type = Camera::CameraType::lookat;
//camera.type = Camera::CameraType::firstperson;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, -0.1f, -1.0f));
enableExtensions();
// Buffer device address requires the 64-bit integer feature to be enabled
enabledFeatures.shaderInt64 = VK_TRUE;
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
physicalDeviceDescriptorIndexingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT;
physicalDeviceDescriptorIndexingFeatures.shaderSampledImageArrayNonUniformIndexing = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.runtimeDescriptorArray = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.descriptorBindingVariableDescriptorCount = VK_TRUE;
deviceCreatepNextChain = &physicalDeviceDescriptorIndexingFeatures;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
deleteStorageImage();
deleteAccelerationStructure(bottomLevelAS);
deleteAccelerationStructure(topLevelAS);
vertexBuffer.destroy();
indexBuffer.destroy();
transformBuffer.destroy();
shaderBindingTables.raygen.destroy();
shaderBindingTables.miss.destroy();
shaderBindingTables.hit.destroy();
ubo.destroy();
}
void createAccelerationStructureBuffer(AccelerationStructure &accelerationStructure, VkAccelerationStructureBuildSizesInfoKHR buildSizeInfo)
{
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = buildSizeInfo.accelerationStructureSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &accelerationStructure.buffer));
VkMemoryRequirements memoryRequirements{};
vkGetBufferMemoryRequirements(device, accelerationStructure.buffer, &memoryRequirements);
VkMemoryAllocateFlagsInfo memoryAllocateFlagsInfo{};
memoryAllocateFlagsInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO;
memoryAllocateFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
VkMemoryAllocateInfo memoryAllocateInfo{};
memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memoryAllocateInfo.pNext = &memoryAllocateFlagsInfo;
memoryAllocateInfo.allocationSize = memoryRequirements.size;
memoryAllocateInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocateInfo, nullptr, &accelerationStructure.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, accelerationStructure.buffer, accelerationStructure.memory, 0));
}
/*
Create the bottom level acceleration structure that contains the scene's actual geometry (vertices, triangles)
*/
void createBottomLevelAccelerationStructure()
{
// Use transform matrices from the glTF nodes
std::vector<VkTransformMatrixKHR> transformMatrices{};
for (auto node : model.linearNodes) {
if (node->mesh) {
for (auto primitive : node->mesh->primitives) {
if (primitive->indexCount > 0) {
VkTransformMatrixKHR transformMatrix{};
auto m = glm::mat3x4(glm::transpose(node->getMatrix()));
memcpy(&transformMatrix, (void*)&m, sizeof(glm::mat3x4));
transformMatrices.push_back(transformMatrix);
}
}
}
}
// Transform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&transformBuffer,
static_cast<uint32_t>(transformMatrices.size()) * sizeof(VkTransformMatrixKHR),
transformMatrices.data()));
// Build
// One geometry per glTF node, so we can index materials using gl_GeometryIndexEXT
uint32_t maxPrimCount{ 0 };
std::vector<uint32_t> maxPrimitiveCounts{};
std::vector<VkAccelerationStructureGeometryKHR> geometries{};
std::vector<VkAccelerationStructureBuildRangeInfoKHR> buildRangeInfos{};
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> pBuildRangeInfos{};
std::vector<GeometryNode> geometryNodes{};
for (auto node : model.linearNodes) {
if (node->mesh) {
for (auto primitive : node->mesh->primitives) {
if (primitive->indexCount > 0) {
VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{};
VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{};
VkDeviceOrHostAddressConstKHR transformBufferDeviceAddress{};
vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(model.vertices.buffer);// +primitive->firstVertex * sizeof(vkglTF::Vertex);
indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(model.indices.buffer) + primitive->firstIndex * sizeof(uint32_t);
transformBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(transformBuffer.buffer) + static_cast<uint32_t>(geometryNodes.size()) * sizeof(VkTransformMatrixKHR);
VkAccelerationStructureGeometryKHR geometry{};
geometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
geometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
geometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR;
geometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
geometry.geometry.triangles.vertexData = vertexBufferDeviceAddress;
geometry.geometry.triangles.maxVertex = model.vertices.count;
//geometry.geometry.triangles.maxVertex = primitive->vertexCount;
geometry.geometry.triangles.vertexStride = sizeof(vkglTF::Vertex);
geometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
geometry.geometry.triangles.indexData = indexBufferDeviceAddress;
geometry.geometry.triangles.transformData = transformBufferDeviceAddress;
geometries.push_back(geometry);
maxPrimitiveCounts.push_back(primitive->indexCount / 3);
maxPrimCount += primitive->indexCount / 3;
VkAccelerationStructureBuildRangeInfoKHR buildRangeInfo{};
buildRangeInfo.firstVertex = 0;
buildRangeInfo.primitiveOffset = 0; // primitive->firstIndex * sizeof(uint32_t);
buildRangeInfo.primitiveCount = primitive->indexCount / 3;
buildRangeInfo.transformOffset = 0;
buildRangeInfos.push_back(buildRangeInfo);
GeometryNode geometryNode{};
geometryNode.vertexBufferDeviceAddress = vertexBufferDeviceAddress.deviceAddress;
geometryNode.indexBufferDeviceAddress = indexBufferDeviceAddress.deviceAddress;
geometryNode.textureIndexBaseColor = primitive->material.baseColorTexture->index;
geometryNode.textureIndexOcclusion = primitive->material.occlusionTexture ? primitive->material.occlusionTexture->index : -1;
// @todo: map material id to global texture array
geometryNodes.push_back(geometryNode);
}
}
}
}
for (auto& rangeInfo : buildRangeInfos) {
pBuildRangeInfos.push_back(&rangeInfo);
}
// @todo: stage to device
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&geometryNodesBuffer,
static_cast<uint32_t>(geometryNodes.size()) * sizeof(GeometryNode),
geometryNodes.data()));
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo{};
accelerationStructureBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = geometries.size();
accelerationStructureBuildGeometryInfo.pGeometries = geometries.data();
const uint32_t numTriangles = maxPrimitiveCounts[0];
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo{};
accelerationStructureBuildSizesInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR;
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
maxPrimitiveCounts.data(),
&accelerationStructureBuildSizesInfo);
createAccelerationStructureBuffer(bottomLevelAS, accelerationStructureBuildSizesInfo);
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo{};
accelerationStructureCreateInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
accelerationStructureCreateInfo.buffer = bottomLevelAS.buffer;
accelerationStructureCreateInfo.size = accelerationStructureBuildSizesInfo.accelerationStructureSize;
accelerationStructureCreateInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
vkCreateAccelerationStructureKHR(device, &accelerationStructureCreateInfo, nullptr, &bottomLevelAS.handle);
// Create a small scratch buffer used during build of the bottom level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
accelerationStructureBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationStructureBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
accelerationStructureBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
const VkAccelerationStructureBuildRangeInfoKHR* buildOffsetInfo = buildRangeInfos.data();
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationStructureBuildGeometryInfo,
pBuildRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
accelerationDeviceAddressInfo.accelerationStructure = bottomLevelAS.handle;
bottomLevelAS.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
deleteScratchBuffer(scratchBuffer);
}
/*
The top level acceleration structure contains the scene's object instances
*/
void createTopLevelAccelerationStructure()
{
// We flip the matrix [1][1] = -1.0f to accomodate for the glTF up vector
VkTransformMatrixKHR transformMatrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, -1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f };
VkAccelerationStructureInstanceKHR instance{};
instance.transform = transformMatrix;
instance.instanceCustomIndex = 0;
instance.mask = 0xFF;
instance.instanceShaderBindingTableRecordOffset = 0;
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
// Buffer for instance data
vks::Buffer instancesBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&instancesBuffer,
sizeof(VkAccelerationStructureInstanceKHR),
&instance));
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
VkAccelerationStructureGeometryKHR accelerationStructureGeometry{};
accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
// Get size info
/*
The pSrcAccelerationStructure, dstAccelerationStructure, and mode members of pBuildInfo are ignored. Any VkDeviceOrHostAddressKHR members of pBuildInfo are ignored by this command, except that the hostAddress member of VkAccelerationStructureGeometryTrianglesDataKHR::transformData will be examined to check if it is NULL.*
*/
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo{};
accelerationStructureBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
uint32_t primitive_count = 1;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo{};
accelerationStructureBuildSizesInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR;
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&primitive_count,
&accelerationStructureBuildSizesInfo);
createAccelerationStructureBuffer(topLevelAS, accelerationStructureBuildSizesInfo);
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo{};
accelerationStructureCreateInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
accelerationStructureCreateInfo.buffer = topLevelAS.buffer;
accelerationStructureCreateInfo.size = accelerationStructureBuildSizesInfo.accelerationStructureSize;
accelerationStructureCreateInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
vkCreateAccelerationStructureKHR(device, &accelerationStructureCreateInfo, nullptr, &topLevelAS.handle);
// Create a small scratch buffer used during build of the top level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{};
accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = 1;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
accelerationDeviceAddressInfo.accelerationStructure = topLevelAS.handle;
topLevelAS.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
deleteScratchBuffer(scratchBuffer);
instancesBuffer.destroy();
}
/*
Create the Shader Binding Tables that binds the programs and top-level acceleration structure
SBT Layout used in this sample:
/-----------\
| raygen |
|-----------|
| miss + shadow |
|-----------|
| hit + any |
\-----------/
*/
void createShaderBindingTables() {
const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize;
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
const uint32_t sbtSize = groupCount * handleSizeAligned;
std::vector<uint8_t> shaderHandleStorage(sbtSize);
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
createShaderBindingTable(shaderBindingTables.raygen, 1);
createShaderBindingTable(shaderBindingTables.miss, 2);
createShaderBindingTable(shaderBindingTables.hit, 1);
// Copy handles
memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize);
// We are using two miss shaders, so we need to get two handles for the miss shader binding table
memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize * 2);
memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 3, handleSize);
}
/*
Create our ray tracing pipeline
*/
void createRayTracingPipeline()
{
// @todo:
uint32_t imageCount{ 0 };
imageCount = static_cast<uint32_t>(model.textures.size());
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Top level acceleration structure
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0),
// Binding 1: Ray tracing result image
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1),
// Binding 2: Uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR, 2),
// Binding 3: Texture image
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, 3),
// Binding 4: Geometry node information SSBO
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, 4),
// Binding 5: All images used by the glTF model
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, 5, imageCount)
};
// Unbound set
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT setLayoutBindingFlags{};
setLayoutBindingFlags.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT;
setLayoutBindingFlags.bindingCount = 6;
std::vector<VkDescriptorBindingFlagsEXT> descriptorBindingFlags = {
0,
0,
0,
0,
0,
0,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
};
setLayoutBindingFlags.pBindingFlags = descriptorBindingFlags.data();
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
descriptorSetLayoutCI.pNext = &setLayoutBindingFlags;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
/*
Setup ray tracing shader groups
*/
std::vector<VkPipelineShaderStageCreateInfo> shaderStages;
// Ray generation group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
// Miss group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
// Second shader for shadows
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/shadow.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroups.push_back(shaderGroup);
}
// Closest hit group for doing texture lookups
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
shaderGroup.generalShader = VK_SHADER_UNUSED_KHR;
shaderGroup.closestHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
// This group also uses an anyhit shader for doing transparency (see anyhit.rahit for details)
shaderStages.push_back(loadShader(getShadersPath() + "raytracinggltf/anyhit.rahit.spv", VK_SHADER_STAGE_ANY_HIT_BIT_KHR));
shaderGroup.anyHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroups.push_back(shaderGroup);
}
/*
Create the ray tracing pipeline
*/
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI{};
rayTracingPipelineCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR;
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
rayTracingPipelineCI.pStages = shaderStages.data();
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
rayTracingPipelineCI.pGroups = shaderGroups.data();
rayTracingPipelineCI.maxPipelineRayRecursionDepth = 1;
rayTracingPipelineCI.layout = pipelineLayout;
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
}
/*
Create the descriptor sets used for the ray tracing dispatch
*/
void createDescriptorSets()
{
// @todo
uint32_t imageCount{ 0 };
imageCount = static_cast<uint32_t>(model.textures.size());
std::vector<VkDescriptorPoolSize> poolSizes = {
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 },
{ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1 }
};
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT variableDescriptorCountAllocInfo{};
uint32_t variableDescCounts[] = { imageCount };
variableDescriptorCountAllocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT;
variableDescriptorCountAllocInfo.descriptorSetCount = 1;
variableDescriptorCountAllocInfo.pDescriptorCounts = variableDescCounts;
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
descriptorSetAllocateInfo.pNext = &variableDescriptorCountAllocInfo;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR();
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
VkWriteDescriptorSet accelerationStructureWrite{};
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
// The specialized acceleration structure descriptor has to be chained
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
accelerationStructureWrite.dstSet = descriptorSet;
accelerationStructureWrite.dstBinding = 0;
accelerationStructureWrite.descriptorCount = 1;
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Top level acceleration structure
accelerationStructureWrite,
// Binding 1: Ray tracing result image
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor),
// Binding 2: Uniform data
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor),
// Binding 4: Geometry node information SSBO
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4, &geometryNodesBuffer.descriptor),
};
// Image descriptors for the image array
std::vector<VkDescriptorImageInfo> textureDescriptors{};
for (auto texture : model.textures) {
VkDescriptorImageInfo descriptor{};
descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
descriptor.sampler = texture.sampler;;
descriptor.imageView = texture.view;
textureDescriptors.push_back(descriptor);
}
VkWriteDescriptorSet writeDescriptorImgArray{};
writeDescriptorImgArray.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorImgArray.dstBinding = 5;
writeDescriptorImgArray.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorImgArray.descriptorCount = imageCount;
writeDescriptorImgArray.dstSet = descriptorSet;
writeDescriptorImgArray.pImageInfo = textureDescriptors.data();
writeDescriptorSets.push_back(writeDescriptorImgArray);
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
}
/*
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
*/
void createUniformBuffer()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&ubo,
sizeof(uniformData),
&uniformData));
VK_CHECK_RESULT(ubo.map());
updateUniformBuffers();
}
/*
If the window has been resized, we need to recreate the storage image and it's descriptor
*/
void handleResize()
{
// Recreate image
createStorageImage(swapChain.colorFormat, { width, height, 1 });
// Update descriptor
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
resized = false;
}
/*
Command buffer generation
*/
void buildCommandBuffers()
{
if (resized)
{
handleResize();
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
VkStridedDeviceAddressRegionKHR emptySbtEntry = {};
vkCmdTraceRaysKHR(
drawCmdBuffers[i],
&shaderBindingTables.raygen.stridedDeviceAddressRegion,
&shaderBindingTables.miss.stridedDeviceAddressRegion,
&shaderBindingTables.hit.stridedDeviceAddressRegion,
&emptySbtEntry,
width,
height,
1);
/*
Copy ray tracing output to swap chain image
*/
// Prepare current swap chain image as transfer destination
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Prepare ray tracing output image as transfer source
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
subresourceRange);
VkImageCopy copyRegion{};
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent = { width, height, 1 };
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copyRegion);
// Transition swap chain image back for presentation
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
subresourceRange);
// Transition ray tracing output image back to general layout
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_GENERAL,
subresourceRange);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void updateUniformBuffers()
{
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
uniformData.viewInverse = glm::inverse(camera.matrices.view);
uniformData.frame++;
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
}
void getEnabledFeatures()
{
// Enable features required for ray tracing using feature chaining via pNext
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
deviceCreatepNextChain = &enabledAccelerationStructureFeatures;
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
void loadAssets()
{
vkglTF::memoryPropertyFlags = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
model.loadFromFile(getAssetPath() + "models/FlightHelmet/glTF/FlightHelmet.gltf", vulkanDevice, queue);
}
void prepare()
{
VulkanRaytracingSample::prepare();
loadAssets();
// Create the acceleration structures used to render the ray traced scene
createBottomLevelAccelerationStructure();
createTopLevelAccelerationStructure();
createStorageImage(swapChain.colorFormat, { width, height, 1 });
createUniformBuffer();
createRayTracingPipeline();
createShaderBindingTables();
createDescriptorSets();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
draw();
}
virtual void viewChanged()
{
uniformData.frame = -1;
}
};
VULKAN_EXAMPLE_MAIN()

View file

@ -7,7 +7,7 @@
*/ */
/* /*
* Note : This sample is work-in-progress and works basically, but it's not yet finished * Important note : This sample is work-in-progress and works basically, but it's not finished
*/ */
#include "texturesparseresidency.h" #include "texturesparseresidency.h"

View file

@ -0,0 +1,49 @@
/* Copyright (c) 2023, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_buffer_reference2 : require
#extension GL_EXT_scalar_block_layout : require
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
layout(location = 0) rayPayloadInEXT vec3 hitValue;
layout(location = 3) rayPayloadInEXT uint payloadSeed;
hitAttributeEXT vec2 attribs;
layout(binding = 3, set = 0) uniform sampler2D image;
struct GeometryNode {
uint64_t vertexBufferDeviceAddress;
uint64_t indexBufferDeviceAddress;
int textureIndexBaseColor;
int textureIndexOcclusion;
};
layout(binding = 4, set = 0) buffer GeometryNodes { GeometryNode nodes[]; } geometryNodes;
layout(binding = 5, set = 0) uniform sampler2D textures[];
#include "bufferreferences.glsl"
#include "geometrytypes.glsl"
#include "random.glsl"
void main()
{
Triangle tri = unpackTriangle(gl_PrimitiveID, 112);
GeometryNode geometryNode = geometryNodes.nodes[gl_GeometryIndexEXT];
vec4 color = texture(textures[nonuniformEXT(geometryNode.textureIndexBaseColor)], tri.uv);
// If the alpha value of the texture at the current UV coordinates is below a given threshold, we'll ignore this intersection
// That way ray traversal will be stopped and the miss shader will be invoked
// if (color.a < 0.9) {
//if (((gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x + gl_LaunchIDEXT.x) % 4) == 0) {
if(rnd(payloadSeed) > color.a) {
ignoreIntersectionEXT;
}
// }
}

Binary file not shown.

View file

@ -0,0 +1,15 @@
/* Copyright (c) 2023, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
layout(push_constant) uniform BufferReferences {
uint64_t vertices;
uint64_t indices;
uint64_t bufferAddress;
} bufferReferences;
layout(buffer_reference, scalar) buffer Vertices {vec4 v[]; };
layout(buffer_reference, scalar) buffer Indices {uint i[]; };
layout(buffer_reference, scalar) buffer Data {vec4 f[]; };

View file

@ -0,0 +1,63 @@
/* Copyright (c) 2023, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_buffer_reference2 : require
#extension GL_EXT_scalar_block_layout : require
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
layout(location = 0) rayPayloadInEXT vec3 hitValue;
layout(location = 2) rayPayloadEXT bool shadowed;
hitAttributeEXT vec2 attribs;
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 3, set = 0) uniform sampler2D image;
struct GeometryNode {
uint64_t vertexBufferDeviceAddress;
uint64_t indexBufferDeviceAddress;
int textureIndexBaseColor;
int textureIndexOcclusion;
};
layout(binding = 4, set = 0) buffer GeometryNodes { GeometryNode nodes[]; } geometryNodes;
layout(binding = 5, set = 0) uniform sampler2D textures[];
#include "bufferreferences.glsl"
#include "geometrytypes.glsl"
void main()
{
Triangle tri = unpackTriangle(gl_PrimitiveID, 112);
hitValue = vec3(tri.normal);
GeometryNode geometryNode = geometryNodes.nodes[gl_GeometryIndexEXT];
vec3 color = texture(textures[nonuniformEXT(geometryNode.textureIndexBaseColor)], tri.uv).rgb;
if (geometryNode.textureIndexOcclusion > -1) {
float occlusion = texture(textures[nonuniformEXT(geometryNode.textureIndexOcclusion)], tri.uv).r;
color *= occlusion;
}
hitValue = color;
// Shadow casting
float tmin = 0.001;
float tmax = 10000.0;
float epsilon = 0.001;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT + tri.normal * epsilon;
shadowed = true;
vec3 lightVector = vec3(-5.0, -2.5, -5.0);
// Trace shadow ray and offset indices to match shadow hit/miss shader group indices
// traceRayEXT(topLevelAS, gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT, 0xFF, 0, 0, 1, origin, tmin, lightVector, tmax, 2);
// if (shadowed) {
// hitValue *= 0.7;
// }
}

Binary file not shown.

View file

@ -0,0 +1,50 @@
/* Copyright (c) 2023, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct Vertex
{
vec3 pos;
vec3 normal;
vec2 uv;
};
struct Triangle {
Vertex vertices[3];
vec3 normal;
vec2 uv;
};
// This function will unpack our vertex buffer data into a single triangle and calculates uv coordinates
Triangle unpackTriangle(uint index, int vertexSize) {
Triangle tri;
const uint triIndex = index * 3;
GeometryNode geometryNode = geometryNodes.nodes[gl_GeometryIndexEXT];
Indices indices = Indices(geometryNode.indexBufferDeviceAddress);
Vertices vertices = Vertices(geometryNode.vertexBufferDeviceAddress);
// Unpack vertices
// Data is packed as vec4 so we can map to the glTF vertex structure from the host side
// We match vkglTF::Vertex: pos.xyz+normal.x, normalyz+uv.xy
// glm::vec3 pos;
// glm::vec3 normal;
// glm::vec2 uv;
// ...
for (uint i = 0; i < 3; i++) {
const uint offset = indices.i[triIndex + i] * 6;
vec4 d0 = vertices.v[offset + 0]; // pos.xyz, n.x
vec4 d1 = vertices.v[offset + 1]; // n.yz, uv.xy
tri.vertices[i].pos = d0.xyz;
tri.vertices[i].normal = vec3(d0.w, d1.xy);
tri.vertices[i].uv = d1.zw;
}
// Calculate values at barycentric coordinates
vec3 barycentricCoords = vec3(1.0f - attribs.x - attribs.y, attribs.x, attribs.y);
tri.uv = tri.vertices[0].uv * barycentricCoords.x + tri.vertices[1].uv * barycentricCoords.y + tri.vertices[2].uv * barycentricCoords.z;
tri.normal = tri.vertices[0].normal * barycentricCoords.x + tri.vertices[1].normal * barycentricCoords.y + tri.vertices[2].normal * barycentricCoords.z;
return tri;
}

View file

@ -0,0 +1,15 @@
/* Copyright (c) 2023, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
#version 460
#extension GL_EXT_ray_tracing : enable
layout(location = 0) rayPayloadInEXT vec3 hitValue;
void main()
{
hitValue = vec3(1.0);
}

Binary file not shown.

View file

@ -0,0 +1,37 @@
/* Copyright (c) 2023, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
// Tiny Encryption Algorithm
// By Fahad Zafar, Marc Olano and Aaron Curtis, see https://www.highperformancegraphics.org/previous/www_2010/media/GPUAlgorithms/HPG2010_GPUAlgorithms_Zafar.pdf
uint tea(uint val0, uint val1)
{
uint sum = 0;
uint v0 = val0;
uint v1 = val1;
for (uint n = 0; n < 16; n++)
{
sum += 0x9E3779B9;
v0 += ((v1 << 4) + 0xA341316C) ^ (v1 + sum) ^ ((v1 >> 5) + 0xC8013EA4);
v1 += ((v0 << 4) + 0xAD90777D) ^ (v0 + sum) ^ ((v0 >> 5) + 0x7E95761E);
}
return v0;
}
// Linear congruential generator based on the previous RNG state
// See https://en.wikipedia.org/wiki/Linear_congruential_generator
uint lcg(inout uint previous)
{
const uint multiplier = 1664525u;
const uint increment = 1013904223u;
previous = (multiplier * previous + increment);
return previous & 0x00FFFFFF;
}
// Generate a random float in [0, 1) given the previous RNG state
float rnd(inout uint previous)
{
return (float(lcg(previous)) / float(0x01000000));
}

View file

@ -0,0 +1,77 @@
/* Copyright (c) 2023, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
#version 460
#extension GL_EXT_ray_tracing : enable
#extension GL_GOOGLE_include_directive : require
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 0, rgba8) uniform image2D image;
layout(binding = 2, set = 0) uniform CameraProperties
{
mat4 viewInverse;
mat4 projInverse;
uint frame;
} cam;
layout(location = 0) rayPayloadEXT vec3 hitValue;
layout(location = 3) rayPayloadEXT uint payloadSeed;
#include "random.glsl"
void main()
{
uint seed = tea(gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x + gl_LaunchIDEXT.x, cam.frame);
float r1 = rnd(seed);
float r2 = rnd(seed);
// Subpixel jitter: send the ray through a different position inside the pixel
// each time, to provide antialiasing.
vec2 subpixel_jitter = cam.frame == 0 ? vec2(0.5f, 0.5f) : vec2(r1, r2);
const vec2 pixelCenter = vec2(gl_LaunchIDEXT.xy) + subpixel_jitter;
const vec2 inUV = pixelCenter / vec2(gl_LaunchSizeEXT.xy);
vec2 d = inUV * 2.0 - 1.0;
// const vec2 pixelCenter = vec2(gl_LaunchIDEXT.xy) + vec2(0.5);
// const vec2 inUV = pixelCenter/vec2(gl_LaunchSizeEXT.xy);
// vec2 d = inUV * 2.0 - 1.0;
vec4 origin = cam.viewInverse * vec4(0,0,0,1);
vec4 target = cam.projInverse * vec4(d.x, d.y, 1, 1) ;
vec4 direction = cam.viewInverse*vec4(normalize(target.xyz), 0.0) ;
float tmin = 0.001;
float tmax = 10000.0;
hitValue = vec3(0.0);
vec3 hitValues = vec3(0);
const int samples = 4;
// Trace multiple rays for e.g. transparency
for(int smpl = 0; smpl < samples; smpl++) {
payloadSeed = tea(gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x + gl_LaunchIDEXT.x, cam.frame);
traceRayEXT(topLevelAS, gl_RayFlagsNoneEXT, 0xff, 0, 0, 0, origin.xyz, tmin, direction.xyz, tmax, 0);
hitValues += hitValue;
}
// imageStore(image, ivec2(gl_LaunchIDEXT.xy), vec4(hitValues / float(samples), 0.0));
vec3 hitVal = hitValues / float(samples);
if(cam.frame > 0)
{
float a = 1.0f / float(cam.frame + 1);
vec3 old_color = imageLoad(image, ivec2(gl_LaunchIDEXT.xy)).xyz;
imageStore(image, ivec2(gl_LaunchIDEXT.xy), vec4(mix(old_color, hitVal, a), 1.f));
}
else
{
// First frame, replace the value in the buffer
imageStore(image, ivec2(gl_LaunchIDEXT.xy), vec4(hitVal, 1.f));
}
}

Binary file not shown.

View file

@ -0,0 +1,9 @@
#version 460
#extension GL_EXT_ray_tracing : require
layout(location = 2) rayPayloadInEXT bool shadowed;
void main()
{
shadowed = false;
}

Binary file not shown.