Started working on sample showing comparing separate/interleaved vertex attributes
This commit is contained in:
parent
91958acad2
commit
5f1aac61ca
10 changed files with 929 additions and 0 deletions
657
examples/vertexattributes/vertexattributes.cpp
Normal file
657
examples/vertexattributes/vertexattributes.cpp
Normal file
|
|
@ -0,0 +1,657 @@
|
|||
/*
|
||||
* Vulkan Example - Passing vertex attributes using interleaved and separate buffers
|
||||
*
|
||||
* Copyright (C) 2021 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include "vertexattributes.h"
|
||||
|
||||
/*
|
||||
Vulkan glTF scene class
|
||||
*/
|
||||
|
||||
VulkanglTFScene::~VulkanglTFScene()
|
||||
{
|
||||
// Release all Vulkan resources allocated for the model
|
||||
vertices.destroy();
|
||||
indices.destroy();
|
||||
for (Image image : images) {
|
||||
vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr);
|
||||
vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr);
|
||||
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
|
||||
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
glTF loading functions
|
||||
|
||||
The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
|
||||
*/
|
||||
|
||||
void VulkanglTFScene::loadImages(tinygltf::Model& input)
|
||||
{
|
||||
// POI: The textures for the glTF file used in this sample are stored as external ktx files, so we can directly load them from disk without the need for conversion
|
||||
images.resize(input.images.size());
|
||||
for (size_t i = 0; i < input.images.size(); i++) {
|
||||
tinygltf::Image& glTFImage = input.images[i];
|
||||
images[i].texture.loadFromFile(path + "/" + glTFImage.uri, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, copyQueue);
|
||||
}
|
||||
}
|
||||
|
||||
void VulkanglTFScene::loadTextures(tinygltf::Model& input)
|
||||
{
|
||||
textures.resize(input.textures.size());
|
||||
for (size_t i = 0; i < input.textures.size(); i++) {
|
||||
textures[i].imageIndex = input.textures[i].source;
|
||||
}
|
||||
}
|
||||
|
||||
void VulkanglTFScene::loadMaterials(tinygltf::Model& input)
|
||||
{
|
||||
materials.resize(input.materials.size());
|
||||
for (size_t i = 0; i < input.materials.size(); i++) {
|
||||
// We only read the most basic properties required for our sample
|
||||
tinygltf::Material glTFMaterial = input.materials[i];
|
||||
// Get the base color factor
|
||||
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
|
||||
materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
|
||||
}
|
||||
// Get base color texture index
|
||||
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
|
||||
materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
|
||||
}
|
||||
// Get the normal map texture index
|
||||
if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) {
|
||||
materials[i].normalTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex();
|
||||
}
|
||||
// Get some additional material parameters that are used in this sample
|
||||
materials[i].alphaMode = glTFMaterial.alphaMode;
|
||||
materials[i].alphaCutOff = (float)glTFMaterial.alphaCutoff;
|
||||
materials[i].doubleSided = glTFMaterial.doubleSided;
|
||||
}
|
||||
}
|
||||
|
||||
void VulkanglTFScene::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFScene::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFScene::Vertex>& vertexBuffer)
|
||||
{
|
||||
VulkanglTFScene::Node node{};
|
||||
node.name = inputNode.name;
|
||||
|
||||
// Get the local node matrix
|
||||
// It's either made up from translation, rotation, scale or a 4x4 matrix
|
||||
node.matrix = glm::mat4(1.0f);
|
||||
if (inputNode.translation.size() == 3) {
|
||||
node.matrix = glm::translate(node.matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
|
||||
}
|
||||
if (inputNode.rotation.size() == 4) {
|
||||
glm::quat q = glm::make_quat(inputNode.rotation.data());
|
||||
node.matrix *= glm::mat4(q);
|
||||
}
|
||||
if (inputNode.scale.size() == 3) {
|
||||
node.matrix = glm::scale(node.matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
|
||||
}
|
||||
if (inputNode.matrix.size() == 16) {
|
||||
node.matrix = glm::make_mat4x4(inputNode.matrix.data());
|
||||
};
|
||||
|
||||
// Load node's children
|
||||
if (inputNode.children.size() > 0) {
|
||||
for (size_t i = 0; i < inputNode.children.size(); i++) {
|
||||
loadNode(input.nodes[inputNode.children[i]], input, &node, indexBuffer, vertexBuffer);
|
||||
}
|
||||
}
|
||||
|
||||
// If the node contains mesh data, we load vertices and indices from the buffers
|
||||
// In glTF this is done via accessors and buffer views
|
||||
if (inputNode.mesh > -1) {
|
||||
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
|
||||
// Iterate through all primitives of this node's mesh
|
||||
for (size_t i = 0; i < mesh.primitives.size(); i++) {
|
||||
const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
|
||||
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
|
||||
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
|
||||
uint32_t indexCount = 0;
|
||||
|
||||
// Vertex attributes
|
||||
const float* positionBuffer = nullptr;
|
||||
const float* normalsBuffer = nullptr;
|
||||
const float* texCoordsBuffer = nullptr;
|
||||
const float* tangentsBuffer = nullptr;
|
||||
size_t vertexCount = 0;
|
||||
|
||||
// Get buffer data for vertex positions
|
||||
if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) {
|
||||
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
|
||||
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||
positionBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||
vertexCount = accessor.count;
|
||||
}
|
||||
// Get buffer data for vertex normals
|
||||
if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) {
|
||||
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
|
||||
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||
normalsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||
}
|
||||
// Get buffer data for vertex texture coordinates
|
||||
// glTF supports multiple sets, we only load the first one
|
||||
if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) {
|
||||
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
|
||||
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||
texCoordsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||
}
|
||||
// POI: This sample uses normal mapping, so we also need to load the tangents from the glTF file
|
||||
if (glTFPrimitive.attributes.find("TANGENT") != glTFPrimitive.attributes.end()) {
|
||||
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TANGENT")->second];
|
||||
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||
tangentsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||
}
|
||||
|
||||
// Append data to model's vertex buffer
|
||||
for (size_t v = 0; v < vertexCount; v++) {
|
||||
|
||||
// Append interleaved attributes
|
||||
Vertex vert{};
|
||||
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
|
||||
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
|
||||
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
|
||||
vert.tangent = tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f);
|
||||
vertexBuffer.push_back(vert);
|
||||
|
||||
// Append separate attributes
|
||||
vertexAttributes.pos.push_back(glm::make_vec3(&positionBuffer[v * 3]));
|
||||
vertexAttributes.normal.push_back(glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))));
|
||||
vertexAttributes.tangent.push_back(tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f));
|
||||
vertexAttributes.uv.push_back(texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f));
|
||||
|
||||
}
|
||||
|
||||
// Indices
|
||||
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
|
||||
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
|
||||
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
|
||||
|
||||
indexCount += static_cast<uint32_t>(accessor.count);
|
||||
|
||||
// glTF supports different component types of indices
|
||||
switch (accessor.componentType) {
|
||||
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
|
||||
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
||||
for (size_t index = 0; index < accessor.count; index++) {
|
||||
indexBuffer.push_back(buf[index] + vertexStart);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
|
||||
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
||||
for (size_t index = 0; index < accessor.count; index++) {
|
||||
indexBuffer.push_back(buf[index] + vertexStart);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
|
||||
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
||||
for (size_t index = 0; index < accessor.count; index++) {
|
||||
indexBuffer.push_back(buf[index] + vertexStart);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
Primitive primitive{};
|
||||
primitive.firstIndex = firstIndex;
|
||||
primitive.indexCount = indexCount;
|
||||
primitive.materialIndex = glTFPrimitive.material;
|
||||
node.mesh.primitives.push_back(primitive);
|
||||
}
|
||||
}
|
||||
|
||||
if (parent) {
|
||||
parent->children.push_back(node);
|
||||
}
|
||||
else {
|
||||
nodes.push_back(node);
|
||||
}
|
||||
}
|
||||
|
||||
VkDescriptorImageInfo VulkanglTFScene::getTextureDescriptor(const size_t index)
|
||||
{
|
||||
return images[index].texture.descriptor;
|
||||
}
|
||||
|
||||
/*
|
||||
glTF rendering functions
|
||||
*/
|
||||
|
||||
// Draw a single node including child nodes (if present)
|
||||
void VulkanglTFScene::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFScene::Node node, bool separate)
|
||||
{
|
||||
if (!node.visible) {
|
||||
return;
|
||||
}
|
||||
if (node.mesh.primitives.size() > 0) {
|
||||
// Pass the node's matrix via push constants
|
||||
// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
|
||||
|
||||
PushConstBlock pushConstBlock;
|
||||
|
||||
glm::mat4 nodeMatrix = node.matrix;
|
||||
VulkanglTFScene::Node* currentParent = node.parent;
|
||||
while (currentParent) {
|
||||
nodeMatrix = currentParent->matrix * nodeMatrix;
|
||||
currentParent = currentParent->parent;
|
||||
}
|
||||
for (VulkanglTFScene::Primitive& primitive : node.mesh.primitives) {
|
||||
if (primitive.indexCount > 0) {
|
||||
VulkanglTFScene::Material& material = materials[primitive.materialIndex];
|
||||
pushConstBlock.nodeMatrix = nodeMatrix;
|
||||
pushConstBlock.alphaMask = (material.alphaMode == "MASK");
|
||||
pushConstBlock.alphaMaskCutoff = material.alphaCutOff;
|
||||
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
|
||||
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &material.descriptorSet, 0, nullptr);
|
||||
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto& child : node.children) {
|
||||
drawNode(commandBuffer, pipelineLayout, child, separate);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Vulkan Example class
|
||||
*/
|
||||
|
||||
VulkanExample::VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
||||
{
|
||||
title = "Separate vertex attribute buffers";
|
||||
camera.type = Camera::CameraType::firstperson;
|
||||
camera.flipY = true;
|
||||
camera.setPosition(glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f));
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
||||
}
|
||||
|
||||
VulkanExample::~VulkanExample()
|
||||
{
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
|
||||
shaderData.buffer.destroy();
|
||||
}
|
||||
|
||||
void VulkanExample::getEnabledFeatures()
|
||||
{
|
||||
enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy;
|
||||
}
|
||||
|
||||
void VulkanExample::buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = defaultClearColor;
|
||||
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
// Select the separate or interleaved vertex binding pipeline
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, vertexAttributeSettings == VertexAttributeSettings::separate ? pipelines.vertexAttributesSeparate : pipelines.vertexAttributesInterleaved);
|
||||
|
||||
// Bind scene matrices descriptor to set 0
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
|
||||
|
||||
// Use the same index buffer, no matter how vertex attributes are passed
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], glTFScene.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
|
||||
if (vertexAttributeSettings == VertexAttributeSettings::separate) {
|
||||
// Using separate vertex attribute bindings requires binding all attribute buffers
|
||||
VkDeviceSize offsets[4] = { 0, 0, 0, 0 };
|
||||
std::array<VkBuffer, 4> buffers = { vertexAttibuteBuffers.pos.buffer, vertexAttibuteBuffers.normal.buffer, vertexAttibuteBuffers.uv.buffer, vertexAttibuteBuffers.tangent.buffer };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, static_cast<uint32_t>(buffers.size()), buffers.data(), offsets);
|
||||
} else {
|
||||
// Using interleaved attribute bindings only requires one buffer bind
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &glTFScene.vertices.buffer, offsets);
|
||||
}
|
||||
// Render all nodes starting at top-level
|
||||
for (auto& node : glTFScene.nodes) {
|
||||
glTFScene.drawNode(drawCmdBuffers[i], pipelineLayout, node, vertexAttributeSettings == VertexAttributeSettings::separate);
|
||||
}
|
||||
|
||||
drawUI(drawCmdBuffers[i]);
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void VulkanExample::loadglTFFile(std::string filename)
|
||||
{
|
||||
tinygltf::Model glTFInput;
|
||||
tinygltf::TinyGLTF gltfContext;
|
||||
std::string error, warning;
|
||||
|
||||
this->device = device;
|
||||
|
||||
#if defined(__ANDROID__)
|
||||
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
|
||||
// We let tinygltf handle this, by passing the asset manager of our app
|
||||
tinygltf::asset_manager = androidApp->activity->assetManager;
|
||||
#endif
|
||||
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
|
||||
|
||||
// Pass some Vulkan resources required for setup and rendering to the glTF model loading class
|
||||
glTFScene.vulkanDevice = vulkanDevice;
|
||||
glTFScene.copyQueue = queue;
|
||||
|
||||
size_t pos = filename.find_last_of('/');
|
||||
glTFScene.path = filename.substr(0, pos);
|
||||
|
||||
std::vector<uint32_t> indexBuffer;
|
||||
std::vector<VulkanglTFScene::Vertex> vertexBuffer;
|
||||
|
||||
if (!fileLoaded) {
|
||||
vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
|
||||
return;
|
||||
}
|
||||
glTFScene.loadImages(glTFInput);
|
||||
glTFScene.loadMaterials(glTFInput);
|
||||
glTFScene.loadTextures(glTFInput);
|
||||
const tinygltf::Scene& scene = glTFInput.scenes[0];
|
||||
for (size_t i = 0; i < scene.nodes.size(); i++) {
|
||||
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
|
||||
glTFScene.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer);
|
||||
}
|
||||
|
||||
/* Upload vertex and index buffers */
|
||||
|
||||
/* Anonymous functions to simplify buffer creation */
|
||||
/* Create a staging buffer used as a source for copies */
|
||||
auto createStagingBuffer = [this](vks::Buffer& buffer, void* data, VkDeviceSize size) {
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffer, size, data));
|
||||
};
|
||||
/* Create a device local buffer used as a target for copies*/
|
||||
auto createDeviceBuffer = [this](vks::Buffer& buffer, VkDeviceSize size, VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT) {
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &buffer, size));
|
||||
};
|
||||
|
||||
size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFScene::Vertex);
|
||||
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
||||
|
||||
vks::Buffer vertexStaging, indexStaging;
|
||||
|
||||
createStagingBuffer(indexStaging, indexBuffer.data(), indexBufferSize);
|
||||
createStagingBuffer(vertexStaging, vertexBuffer.data(), vertexBufferSize);
|
||||
|
||||
createDeviceBuffer(glTFScene.indices, indexStaging.size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
|
||||
createDeviceBuffer(glTFScene.vertices, vertexStaging.size);
|
||||
|
||||
// Copy data from staging buffers (host) do device local buffer (gpu)
|
||||
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
VkBufferCopy copyRegion = {};
|
||||
|
||||
copyRegion.size = vertexBufferSize;
|
||||
vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, glTFScene.vertices.buffer, 1, ©Region);
|
||||
|
||||
copyRegion.size = indexBufferSize;
|
||||
vkCmdCopyBuffer(copyCmd, indexStaging.buffer, glTFScene.indices.buffer, 1, ©Region);
|
||||
|
||||
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
||||
|
||||
// Free staging resources
|
||||
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
|
||||
vkFreeMemory(device, vertexStaging.memory, nullptr);
|
||||
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
|
||||
vkFreeMemory(device, indexStaging.memory, nullptr);
|
||||
|
||||
/*
|
||||
Interleaved vertex attributes
|
||||
We create one single buffer containing the interleaved vertex attributes
|
||||
*/
|
||||
|
||||
/*
|
||||
Separate vertex attributes
|
||||
We create a separate buffer for each of the vertex attributes (position, normals, etc.)
|
||||
*/
|
||||
|
||||
std::array<vks::Buffer, 4> stagingBuffers;
|
||||
createStagingBuffer(stagingBuffers[0], glTFScene.vertexAttributes.pos.data(), glTFScene.vertexAttributes.pos.size() * sizeof(glTFScene.vertexAttributes.pos[0]));
|
||||
createStagingBuffer(stagingBuffers[1], glTFScene.vertexAttributes.normal.data(), glTFScene.vertexAttributes.normal.size() * sizeof(glTFScene.vertexAttributes.normal[0]));
|
||||
createStagingBuffer(stagingBuffers[2], glTFScene.vertexAttributes.uv.data(), glTFScene.vertexAttributes.uv.size() * sizeof(glTFScene.vertexAttributes.uv[0]));
|
||||
createStagingBuffer(stagingBuffers[3], glTFScene.vertexAttributes.tangent.data(), glTFScene.vertexAttributes.tangent.size() * sizeof(glTFScene.vertexAttributes.tangent[0]));
|
||||
|
||||
createDeviceBuffer(vertexAttibuteBuffers.pos, stagingBuffers[0].size);
|
||||
createDeviceBuffer(vertexAttibuteBuffers.normal, stagingBuffers[1].size);
|
||||
createDeviceBuffer(vertexAttibuteBuffers.uv, stagingBuffers[2].size);
|
||||
createDeviceBuffer(vertexAttibuteBuffers.tangent, stagingBuffers[3].size);
|
||||
|
||||
// Stage
|
||||
std::vector<vks::Buffer> attributeBuffers = {
|
||||
vertexAttibuteBuffers.pos,
|
||||
vertexAttibuteBuffers.normal,
|
||||
vertexAttibuteBuffers.uv,
|
||||
vertexAttibuteBuffers.tangent,
|
||||
};
|
||||
|
||||
// Copy data from staging buffers (host) do device local buffer (gpu)
|
||||
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
copyRegion = {};
|
||||
for (size_t i = 0; i < attributeBuffers.size(); i++) {
|
||||
copyRegion.size = attributeBuffers[i].size;
|
||||
vkCmdCopyBuffer(copyCmd, stagingBuffers[i].buffer, attributeBuffers[i].buffer, 1, ©Region);
|
||||
}
|
||||
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
||||
|
||||
/*
|
||||
Index buffer
|
||||
The index buffer is always the same, no matter how we pass the vertex attributes
|
||||
*/
|
||||
|
||||
|
||||
// @todo: clear
|
||||
}
|
||||
|
||||
void VulkanExample::loadAssets()
|
||||
{
|
||||
loadglTFFile(getAssetPath() + "models/sponza/sponza.gltf");
|
||||
}
|
||||
|
||||
void VulkanExample::setupDescriptors()
|
||||
{
|
||||
// One ubo to pass dynamic data to the shader
|
||||
// Two combined image samplers per material as each material uses color and normal maps
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFScene.materials.size()) * 2),
|
||||
};
|
||||
// One set for matrices and one per model image/texture
|
||||
const uint32_t maxSetCount = static_cast<uint32_t>(glTFScene.images.size()) + 1;
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||
// Descriptor set layout for passing matrices
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
|
||||
};
|
||||
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
|
||||
// Descriptor set layout for passing material textures
|
||||
setLayoutBindings = {
|
||||
// Color map
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
||||
// Normal map
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
|
||||
};
|
||||
descriptorSetLayoutCI.pBindings = setLayoutBindings.data();
|
||||
descriptorSetLayoutCI.bindingCount = 2;
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
|
||||
|
||||
// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
|
||||
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures };
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
|
||||
// We will use push constants to push the local matrices of a primitive to the vertex shader
|
||||
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushConstBlock), 0);
|
||||
// Push constant ranges are part of the pipeline layout
|
||||
pipelineLayoutCI.pushConstantRangeCount = 1;
|
||||
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
||||
|
||||
// Descriptor set for scene matrices
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
||||
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
|
||||
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
||||
|
||||
// Descriptor sets for the materials
|
||||
for (auto& material : glTFScene.materials) {
|
||||
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.descriptorSet));
|
||||
VkDescriptorImageInfo colorMap = glTFScene.getTextureDescriptor(material.baseColorTextureIndex);
|
||||
VkDescriptorImageInfo normalMap = glTFScene.getTextureDescriptor(material.normalTextureIndex);
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorMap),
|
||||
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &normalMap),
|
||||
};
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
void VulkanExample::preparePipelines()
|
||||
{
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
||||
|
||||
// @todo: comment
|
||||
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsInterleaved = {
|
||||
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFScene::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||
};
|
||||
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesInterleaved = {
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, pos)),
|
||||
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, normal)),
|
||||
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, uv)),
|
||||
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, tangent)),
|
||||
};
|
||||
|
||||
// @todo: comment
|
||||
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsSeparate = {
|
||||
vks::initializers::vertexInputBindingDescription(0, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||
vks::initializers::vertexInputBindingDescription(1, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||
vks::initializers::vertexInputBindingDescription(2, sizeof(glm::vec2), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||
vks::initializers::vertexInputBindingDescription(3, sizeof(glm::vec4), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||
};
|
||||
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesSeparate = {
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||
vks::initializers::vertexInputAttributeDescription(1, 1, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||
vks::initializers::vertexInputAttributeDescription(2, 2, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||
vks::initializers::vertexInputAttributeDescription(3, 3, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||
};
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
||||
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
||||
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
||||
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
||||
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
||||
pipelineCI.pMultisampleState = &multisampleStateCI;
|
||||
pipelineCI.pViewportState = &viewportStateCI;
|
||||
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
||||
pipelineCI.pDynamicState = &dynamicStateCI;
|
||||
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCI.pStages = shaderStages.data();
|
||||
|
||||
shaderStages[0] = loadShader(getShadersPath() + "vertexattributes/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getShadersPath() + "vertexattributes/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
|
||||
//rasterizationStateCI.cullMode = material.doubleSided ? VK_CULL_MODE_NONE : VK_CULL_MODE_BACK_BIT;
|
||||
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsInterleaved, vertexInputAttributesInterleaved);
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesInterleaved));
|
||||
|
||||
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsSeparate, vertexInputAttributesSeparate);
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesSeparate));
|
||||
}
|
||||
|
||||
void VulkanExample::prepareUniformBuffers()
|
||||
{
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&shaderData.buffer,
|
||||
sizeof(shaderData.values)));
|
||||
VK_CHECK_RESULT(shaderData.buffer.map());
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
void VulkanExample::updateUniformBuffers()
|
||||
{
|
||||
shaderData.values.projection = camera.matrices.perspective;
|
||||
shaderData.values.view = camera.matrices.view;
|
||||
shaderData.values.viewPos = camera.viewPos;
|
||||
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
|
||||
}
|
||||
|
||||
void VulkanExample::prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
loadAssets();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptors();
|
||||
preparePipelines();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
void VulkanExample::render()
|
||||
{
|
||||
renderFrame();
|
||||
if (camera.updated) {
|
||||
updateUniformBuffers();
|
||||
}
|
||||
}
|
||||
|
||||
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay)
|
||||
{
|
||||
if (overlay->header("Vertex buffer attributes")) {
|
||||
bool interleaved = (vertexAttributeSettings == VertexAttributeSettings::interleaved);
|
||||
bool separate = (vertexAttributeSettings == VertexAttributeSettings::separate);
|
||||
if (overlay->radioButton("Interleaved", interleaved)) {
|
||||
vertexAttributeSettings = VertexAttributeSettings::interleaved;
|
||||
buildCommandBuffers();
|
||||
}
|
||||
if (overlay->radioButton("Separate", separate)) {
|
||||
vertexAttributeSettings = VertexAttributeSettings::separate;
|
||||
buildCommandBuffers();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue