Started working on sample showing comparing separate/interleaved vertex attributes
This commit is contained in:
parent
91958acad2
commit
5f1aac61ca
10 changed files with 929 additions and 0 deletions
|
|
@ -434,6 +434,13 @@ namespace vks
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool UIOverlay::radioButton(const char* caption, bool value)
|
||||||
|
{
|
||||||
|
bool res = ImGui::RadioButton(caption, value);
|
||||||
|
if (res) { updated = true; };
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
bool UIOverlay::inputFloat(const char *caption, float *value, float step, uint32_t precision)
|
bool UIOverlay::inputFloat(const char *caption, float *value, float step, uint32_t precision)
|
||||||
{
|
{
|
||||||
bool res = ImGui::InputFloat(caption, value, step, step * 10.0f, precision);
|
bool res = ImGui::InputFloat(caption, value, step, step * 10.0f, precision);
|
||||||
|
|
|
||||||
|
|
@ -81,6 +81,7 @@ namespace vks
|
||||||
bool header(const char* caption);
|
bool header(const char* caption);
|
||||||
bool checkBox(const char* caption, bool* value);
|
bool checkBox(const char* caption, bool* value);
|
||||||
bool checkBox(const char* caption, int32_t* value);
|
bool checkBox(const char* caption, int32_t* value);
|
||||||
|
bool radioButton(const char* caption, bool value);
|
||||||
bool inputFloat(const char* caption, float* value, float step, uint32_t precision);
|
bool inputFloat(const char* caption, float* value, float step, uint32_t precision);
|
||||||
bool sliderFloat(const char* caption, float* value, float min, float max);
|
bool sliderFloat(const char* caption, float* value, float min, float max);
|
||||||
bool sliderInt(const char* caption, int32_t* value, int32_t min, int32_t max);
|
bool sliderInt(const char* caption, int32_t* value, int32_t min, int32_t max);
|
||||||
|
|
|
||||||
43
data/shaders/glsl/vertexattributes/scene.frag
Normal file
43
data/shaders/glsl/vertexattributes/scene.frag
Normal file
|
|
@ -0,0 +1,43 @@
|
||||||
|
#version 450
|
||||||
|
|
||||||
|
layout (set = 1, binding = 0) uniform sampler2D samplerColorMap;
|
||||||
|
layout (set = 1, binding = 1) uniform sampler2D samplerNormalMap;
|
||||||
|
|
||||||
|
layout (location = 0) in vec3 inNormal;
|
||||||
|
layout (location = 1) in vec2 inUV;
|
||||||
|
layout (location = 2) in vec3 inViewVec;
|
||||||
|
layout (location = 3) in vec3 inLightVec;
|
||||||
|
layout (location = 4) in vec4 inTangent;
|
||||||
|
|
||||||
|
layout (location = 0) out vec4 outFragColor;
|
||||||
|
|
||||||
|
layout(push_constant) uniform PushConsts {
|
||||||
|
mat4 model;
|
||||||
|
uint alphaMask;
|
||||||
|
float alphaMaskCuttoff;
|
||||||
|
} pushConsts;
|
||||||
|
|
||||||
|
void main()
|
||||||
|
{
|
||||||
|
vec4 color = texture(samplerColorMap, inUV);
|
||||||
|
|
||||||
|
if (pushConsts.alphaMask == 1) {
|
||||||
|
if (color.a < pushConsts.alphaMaskCuttoff) {
|
||||||
|
discard;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
vec3 N = normalize(inNormal);
|
||||||
|
vec3 T = normalize(inTangent.xyz);
|
||||||
|
vec3 B = cross(inNormal, inTangent.xyz) * inTangent.w;
|
||||||
|
mat3 TBN = mat3(T, B, N);
|
||||||
|
N = TBN * normalize(texture(samplerNormalMap, inUV).xyz * 2.0 - vec3(1.0));
|
||||||
|
|
||||||
|
const float ambient = 0.1;
|
||||||
|
vec3 L = normalize(inLightVec);
|
||||||
|
vec3 V = normalize(inViewVec);
|
||||||
|
vec3 R = reflect(-L, N);
|
||||||
|
vec3 diffuse = max(dot(N, L), ambient).rrr;
|
||||||
|
float specular = pow(max(dot(R, V), 0.0), 32.0);
|
||||||
|
outFragColor = vec4(diffuse * color.rgb + specular, color.a);
|
||||||
|
}
|
||||||
BIN
data/shaders/glsl/vertexattributes/scene.frag.spv
Normal file
BIN
data/shaders/glsl/vertexattributes/scene.frag.spv
Normal file
Binary file not shown.
39
data/shaders/glsl/vertexattributes/scene.vert
Normal file
39
data/shaders/glsl/vertexattributes/scene.vert
Normal file
|
|
@ -0,0 +1,39 @@
|
||||||
|
#version 450
|
||||||
|
|
||||||
|
layout (location = 0) in vec3 inPos;
|
||||||
|
layout (location = 1) in vec3 inNormal;
|
||||||
|
layout (location = 2) in vec2 inUV;
|
||||||
|
layout (location = 3) in vec4 inTangent;
|
||||||
|
|
||||||
|
layout (set = 0, binding = 0) uniform UBOScene
|
||||||
|
{
|
||||||
|
mat4 projection;
|
||||||
|
mat4 view;
|
||||||
|
vec4 lightPos;
|
||||||
|
vec4 viewPos;
|
||||||
|
} uboScene;
|
||||||
|
|
||||||
|
layout(push_constant) uniform PushConsts {
|
||||||
|
mat4 model;
|
||||||
|
uint alphaMask;
|
||||||
|
float alphaMaskCuttoff;
|
||||||
|
} pushConsts;
|
||||||
|
|
||||||
|
layout (location = 0) out vec3 outNormal;
|
||||||
|
layout (location = 1) out vec2 outUV;
|
||||||
|
layout (location = 2) out vec3 outViewVec;
|
||||||
|
layout (location = 3) out vec3 outLightVec;
|
||||||
|
layout (location = 4) out vec4 outTangent;
|
||||||
|
|
||||||
|
void main()
|
||||||
|
{
|
||||||
|
outNormal = inNormal;
|
||||||
|
outUV = inUV;
|
||||||
|
outTangent = inTangent;
|
||||||
|
gl_Position = uboScene.projection * uboScene.view * pushConsts.model * vec4(inPos.xyz, 1.0);
|
||||||
|
|
||||||
|
outNormal = mat3(pushConsts.model) * inNormal;
|
||||||
|
vec4 pos = pushConsts.model * vec4(inPos, 1.0);
|
||||||
|
outLightVec = uboScene.lightPos.xyz - pos.xyz;
|
||||||
|
outViewVec = uboScene.viewPos.xyz - pos.xyz;
|
||||||
|
}
|
||||||
BIN
data/shaders/glsl/vertexattributes/scene.vert.spv
Normal file
BIN
data/shaders/glsl/vertexattributes/scene.vert.spv
Normal file
Binary file not shown.
|
|
@ -136,6 +136,7 @@ set(EXAMPLES
|
||||||
texturesparseresidency
|
texturesparseresidency
|
||||||
triangle
|
triangle
|
||||||
variablerateshading
|
variablerateshading
|
||||||
|
vertexattributes
|
||||||
viewportarray
|
viewportarray
|
||||||
vulkanscene
|
vulkanscene
|
||||||
)
|
)
|
||||||
|
|
|
||||||
5
examples/vertexattributes/README.md
Normal file
5
examples/vertexattributes/README.md
Normal file
|
|
@ -0,0 +1,5 @@
|
||||||
|
# Vertex attributes
|
||||||
|
|
||||||
|
## Synopsis
|
||||||
|
|
||||||
|
This sample demonstrates how to pass vertex attributes using interleaved or separate buffers.
|
||||||
657
examples/vertexattributes/vertexattributes.cpp
Normal file
657
examples/vertexattributes/vertexattributes.cpp
Normal file
|
|
@ -0,0 +1,657 @@
|
||||||
|
/*
|
||||||
|
* Vulkan Example - Passing vertex attributes using interleaved and separate buffers
|
||||||
|
*
|
||||||
|
* Copyright (C) 2021 by Sascha Willems - www.saschawillems.de
|
||||||
|
*
|
||||||
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "vertexattributes.h"
|
||||||
|
|
||||||
|
/*
|
||||||
|
Vulkan glTF scene class
|
||||||
|
*/
|
||||||
|
|
||||||
|
VulkanglTFScene::~VulkanglTFScene()
|
||||||
|
{
|
||||||
|
// Release all Vulkan resources allocated for the model
|
||||||
|
vertices.destroy();
|
||||||
|
indices.destroy();
|
||||||
|
for (Image image : images) {
|
||||||
|
vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr);
|
||||||
|
vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr);
|
||||||
|
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
|
||||||
|
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
glTF loading functions
|
||||||
|
|
||||||
|
The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
|
||||||
|
*/
|
||||||
|
|
||||||
|
void VulkanglTFScene::loadImages(tinygltf::Model& input)
|
||||||
|
{
|
||||||
|
// POI: The textures for the glTF file used in this sample are stored as external ktx files, so we can directly load them from disk without the need for conversion
|
||||||
|
images.resize(input.images.size());
|
||||||
|
for (size_t i = 0; i < input.images.size(); i++) {
|
||||||
|
tinygltf::Image& glTFImage = input.images[i];
|
||||||
|
images[i].texture.loadFromFile(path + "/" + glTFImage.uri, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, copyQueue);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanglTFScene::loadTextures(tinygltf::Model& input)
|
||||||
|
{
|
||||||
|
textures.resize(input.textures.size());
|
||||||
|
for (size_t i = 0; i < input.textures.size(); i++) {
|
||||||
|
textures[i].imageIndex = input.textures[i].source;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanglTFScene::loadMaterials(tinygltf::Model& input)
|
||||||
|
{
|
||||||
|
materials.resize(input.materials.size());
|
||||||
|
for (size_t i = 0; i < input.materials.size(); i++) {
|
||||||
|
// We only read the most basic properties required for our sample
|
||||||
|
tinygltf::Material glTFMaterial = input.materials[i];
|
||||||
|
// Get the base color factor
|
||||||
|
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
|
||||||
|
materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
|
||||||
|
}
|
||||||
|
// Get base color texture index
|
||||||
|
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
|
||||||
|
materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
|
||||||
|
}
|
||||||
|
// Get the normal map texture index
|
||||||
|
if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) {
|
||||||
|
materials[i].normalTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex();
|
||||||
|
}
|
||||||
|
// Get some additional material parameters that are used in this sample
|
||||||
|
materials[i].alphaMode = glTFMaterial.alphaMode;
|
||||||
|
materials[i].alphaCutOff = (float)glTFMaterial.alphaCutoff;
|
||||||
|
materials[i].doubleSided = glTFMaterial.doubleSided;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanglTFScene::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFScene::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFScene::Vertex>& vertexBuffer)
|
||||||
|
{
|
||||||
|
VulkanglTFScene::Node node{};
|
||||||
|
node.name = inputNode.name;
|
||||||
|
|
||||||
|
// Get the local node matrix
|
||||||
|
// It's either made up from translation, rotation, scale or a 4x4 matrix
|
||||||
|
node.matrix = glm::mat4(1.0f);
|
||||||
|
if (inputNode.translation.size() == 3) {
|
||||||
|
node.matrix = glm::translate(node.matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
|
||||||
|
}
|
||||||
|
if (inputNode.rotation.size() == 4) {
|
||||||
|
glm::quat q = glm::make_quat(inputNode.rotation.data());
|
||||||
|
node.matrix *= glm::mat4(q);
|
||||||
|
}
|
||||||
|
if (inputNode.scale.size() == 3) {
|
||||||
|
node.matrix = glm::scale(node.matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
|
||||||
|
}
|
||||||
|
if (inputNode.matrix.size() == 16) {
|
||||||
|
node.matrix = glm::make_mat4x4(inputNode.matrix.data());
|
||||||
|
};
|
||||||
|
|
||||||
|
// Load node's children
|
||||||
|
if (inputNode.children.size() > 0) {
|
||||||
|
for (size_t i = 0; i < inputNode.children.size(); i++) {
|
||||||
|
loadNode(input.nodes[inputNode.children[i]], input, &node, indexBuffer, vertexBuffer);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the node contains mesh data, we load vertices and indices from the buffers
|
||||||
|
// In glTF this is done via accessors and buffer views
|
||||||
|
if (inputNode.mesh > -1) {
|
||||||
|
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
|
||||||
|
// Iterate through all primitives of this node's mesh
|
||||||
|
for (size_t i = 0; i < mesh.primitives.size(); i++) {
|
||||||
|
const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
|
||||||
|
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
|
||||||
|
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
|
||||||
|
uint32_t indexCount = 0;
|
||||||
|
|
||||||
|
// Vertex attributes
|
||||||
|
const float* positionBuffer = nullptr;
|
||||||
|
const float* normalsBuffer = nullptr;
|
||||||
|
const float* texCoordsBuffer = nullptr;
|
||||||
|
const float* tangentsBuffer = nullptr;
|
||||||
|
size_t vertexCount = 0;
|
||||||
|
|
||||||
|
// Get buffer data for vertex positions
|
||||||
|
if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) {
|
||||||
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
|
||||||
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||||
|
positionBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||||
|
vertexCount = accessor.count;
|
||||||
|
}
|
||||||
|
// Get buffer data for vertex normals
|
||||||
|
if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) {
|
||||||
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
|
||||||
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||||
|
normalsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||||
|
}
|
||||||
|
// Get buffer data for vertex texture coordinates
|
||||||
|
// glTF supports multiple sets, we only load the first one
|
||||||
|
if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) {
|
||||||
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
|
||||||
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||||
|
texCoordsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||||
|
}
|
||||||
|
// POI: This sample uses normal mapping, so we also need to load the tangents from the glTF file
|
||||||
|
if (glTFPrimitive.attributes.find("TANGENT") != glTFPrimitive.attributes.end()) {
|
||||||
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TANGENT")->second];
|
||||||
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
||||||
|
tangentsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Append data to model's vertex buffer
|
||||||
|
for (size_t v = 0; v < vertexCount; v++) {
|
||||||
|
|
||||||
|
// Append interleaved attributes
|
||||||
|
Vertex vert{};
|
||||||
|
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
|
||||||
|
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
|
||||||
|
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
|
||||||
|
vert.tangent = tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f);
|
||||||
|
vertexBuffer.push_back(vert);
|
||||||
|
|
||||||
|
// Append separate attributes
|
||||||
|
vertexAttributes.pos.push_back(glm::make_vec3(&positionBuffer[v * 3]));
|
||||||
|
vertexAttributes.normal.push_back(glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))));
|
||||||
|
vertexAttributes.tangent.push_back(tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f));
|
||||||
|
vertexAttributes.uv.push_back(texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// Indices
|
||||||
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
|
||||||
|
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
|
||||||
|
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
|
||||||
|
|
||||||
|
indexCount += static_cast<uint32_t>(accessor.count);
|
||||||
|
|
||||||
|
// glTF supports different component types of indices
|
||||||
|
switch (accessor.componentType) {
|
||||||
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
|
||||||
|
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
||||||
|
for (size_t index = 0; index < accessor.count; index++) {
|
||||||
|
indexBuffer.push_back(buf[index] + vertexStart);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
|
||||||
|
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
||||||
|
for (size_t index = 0; index < accessor.count; index++) {
|
||||||
|
indexBuffer.push_back(buf[index] + vertexStart);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
|
||||||
|
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
||||||
|
for (size_t index = 0; index < accessor.count; index++) {
|
||||||
|
indexBuffer.push_back(buf[index] + vertexStart);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
Primitive primitive{};
|
||||||
|
primitive.firstIndex = firstIndex;
|
||||||
|
primitive.indexCount = indexCount;
|
||||||
|
primitive.materialIndex = glTFPrimitive.material;
|
||||||
|
node.mesh.primitives.push_back(primitive);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parent) {
|
||||||
|
parent->children.push_back(node);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
nodes.push_back(node);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
VkDescriptorImageInfo VulkanglTFScene::getTextureDescriptor(const size_t index)
|
||||||
|
{
|
||||||
|
return images[index].texture.descriptor;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
glTF rendering functions
|
||||||
|
*/
|
||||||
|
|
||||||
|
// Draw a single node including child nodes (if present)
|
||||||
|
void VulkanglTFScene::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFScene::Node node, bool separate)
|
||||||
|
{
|
||||||
|
if (!node.visible) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (node.mesh.primitives.size() > 0) {
|
||||||
|
// Pass the node's matrix via push constants
|
||||||
|
// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
|
||||||
|
|
||||||
|
PushConstBlock pushConstBlock;
|
||||||
|
|
||||||
|
glm::mat4 nodeMatrix = node.matrix;
|
||||||
|
VulkanglTFScene::Node* currentParent = node.parent;
|
||||||
|
while (currentParent) {
|
||||||
|
nodeMatrix = currentParent->matrix * nodeMatrix;
|
||||||
|
currentParent = currentParent->parent;
|
||||||
|
}
|
||||||
|
for (VulkanglTFScene::Primitive& primitive : node.mesh.primitives) {
|
||||||
|
if (primitive.indexCount > 0) {
|
||||||
|
VulkanglTFScene::Material& material = materials[primitive.materialIndex];
|
||||||
|
pushConstBlock.nodeMatrix = nodeMatrix;
|
||||||
|
pushConstBlock.alphaMask = (material.alphaMode == "MASK");
|
||||||
|
pushConstBlock.alphaMaskCutoff = material.alphaCutOff;
|
||||||
|
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
|
||||||
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &material.descriptorSet, 0, nullptr);
|
||||||
|
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (auto& child : node.children) {
|
||||||
|
drawNode(commandBuffer, pipelineLayout, child, separate);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
Vulkan Example class
|
||||||
|
*/
|
||||||
|
|
||||||
|
VulkanExample::VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
||||||
|
{
|
||||||
|
title = "Separate vertex attribute buffers";
|
||||||
|
camera.type = Camera::CameraType::firstperson;
|
||||||
|
camera.flipY = true;
|
||||||
|
camera.setPosition(glm::vec3(0.0f, 1.0f, 0.0f));
|
||||||
|
camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f));
|
||||||
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
VulkanExample::~VulkanExample()
|
||||||
|
{
|
||||||
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||||
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
|
||||||
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
|
||||||
|
shaderData.buffer.destroy();
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::getEnabledFeatures()
|
||||||
|
{
|
||||||
|
enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy;
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::buildCommandBuffers()
|
||||||
|
{
|
||||||
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||||
|
|
||||||
|
VkClearValue clearValues[2];
|
||||||
|
clearValues[0].color = defaultClearColor;
|
||||||
|
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
|
||||||
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||||
|
|
||||||
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
||||||
|
renderPassBeginInfo.renderPass = renderPass;
|
||||||
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||||
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||||
|
renderPassBeginInfo.renderArea.extent.width = width;
|
||||||
|
renderPassBeginInfo.renderArea.extent.height = height;
|
||||||
|
renderPassBeginInfo.clearValueCount = 2;
|
||||||
|
renderPassBeginInfo.pClearValues = clearValues;
|
||||||
|
|
||||||
|
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||||
|
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||||
|
|
||||||
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||||
|
{
|
||||||
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||||
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||||
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||||
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||||
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||||
|
|
||||||
|
// Select the separate or interleaved vertex binding pipeline
|
||||||
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, vertexAttributeSettings == VertexAttributeSettings::separate ? pipelines.vertexAttributesSeparate : pipelines.vertexAttributesInterleaved);
|
||||||
|
|
||||||
|
// Bind scene matrices descriptor to set 0
|
||||||
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
|
||||||
|
|
||||||
|
// Use the same index buffer, no matter how vertex attributes are passed
|
||||||
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], glTFScene.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||||
|
|
||||||
|
if (vertexAttributeSettings == VertexAttributeSettings::separate) {
|
||||||
|
// Using separate vertex attribute bindings requires binding all attribute buffers
|
||||||
|
VkDeviceSize offsets[4] = { 0, 0, 0, 0 };
|
||||||
|
std::array<VkBuffer, 4> buffers = { vertexAttibuteBuffers.pos.buffer, vertexAttibuteBuffers.normal.buffer, vertexAttibuteBuffers.uv.buffer, vertexAttibuteBuffers.tangent.buffer };
|
||||||
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, static_cast<uint32_t>(buffers.size()), buffers.data(), offsets);
|
||||||
|
} else {
|
||||||
|
// Using interleaved attribute bindings only requires one buffer bind
|
||||||
|
VkDeviceSize offsets[1] = { 0 };
|
||||||
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &glTFScene.vertices.buffer, offsets);
|
||||||
|
}
|
||||||
|
// Render all nodes starting at top-level
|
||||||
|
for (auto& node : glTFScene.nodes) {
|
||||||
|
glTFScene.drawNode(drawCmdBuffers[i], pipelineLayout, node, vertexAttributeSettings == VertexAttributeSettings::separate);
|
||||||
|
}
|
||||||
|
|
||||||
|
drawUI(drawCmdBuffers[i]);
|
||||||
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||||
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::loadglTFFile(std::string filename)
|
||||||
|
{
|
||||||
|
tinygltf::Model glTFInput;
|
||||||
|
tinygltf::TinyGLTF gltfContext;
|
||||||
|
std::string error, warning;
|
||||||
|
|
||||||
|
this->device = device;
|
||||||
|
|
||||||
|
#if defined(__ANDROID__)
|
||||||
|
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
|
||||||
|
// We let tinygltf handle this, by passing the asset manager of our app
|
||||||
|
tinygltf::asset_manager = androidApp->activity->assetManager;
|
||||||
|
#endif
|
||||||
|
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
|
||||||
|
|
||||||
|
// Pass some Vulkan resources required for setup and rendering to the glTF model loading class
|
||||||
|
glTFScene.vulkanDevice = vulkanDevice;
|
||||||
|
glTFScene.copyQueue = queue;
|
||||||
|
|
||||||
|
size_t pos = filename.find_last_of('/');
|
||||||
|
glTFScene.path = filename.substr(0, pos);
|
||||||
|
|
||||||
|
std::vector<uint32_t> indexBuffer;
|
||||||
|
std::vector<VulkanglTFScene::Vertex> vertexBuffer;
|
||||||
|
|
||||||
|
if (!fileLoaded) {
|
||||||
|
vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
glTFScene.loadImages(glTFInput);
|
||||||
|
glTFScene.loadMaterials(glTFInput);
|
||||||
|
glTFScene.loadTextures(glTFInput);
|
||||||
|
const tinygltf::Scene& scene = glTFInput.scenes[0];
|
||||||
|
for (size_t i = 0; i < scene.nodes.size(); i++) {
|
||||||
|
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
|
||||||
|
glTFScene.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Upload vertex and index buffers */
|
||||||
|
|
||||||
|
/* Anonymous functions to simplify buffer creation */
|
||||||
|
/* Create a staging buffer used as a source for copies */
|
||||||
|
auto createStagingBuffer = [this](vks::Buffer& buffer, void* data, VkDeviceSize size) {
|
||||||
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffer, size, data));
|
||||||
|
};
|
||||||
|
/* Create a device local buffer used as a target for copies*/
|
||||||
|
auto createDeviceBuffer = [this](vks::Buffer& buffer, VkDeviceSize size, VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT) {
|
||||||
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &buffer, size));
|
||||||
|
};
|
||||||
|
|
||||||
|
size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFScene::Vertex);
|
||||||
|
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
||||||
|
|
||||||
|
vks::Buffer vertexStaging, indexStaging;
|
||||||
|
|
||||||
|
createStagingBuffer(indexStaging, indexBuffer.data(), indexBufferSize);
|
||||||
|
createStagingBuffer(vertexStaging, vertexBuffer.data(), vertexBufferSize);
|
||||||
|
|
||||||
|
createDeviceBuffer(glTFScene.indices, indexStaging.size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
|
||||||
|
createDeviceBuffer(glTFScene.vertices, vertexStaging.size);
|
||||||
|
|
||||||
|
// Copy data from staging buffers (host) do device local buffer (gpu)
|
||||||
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||||
|
VkBufferCopy copyRegion = {};
|
||||||
|
|
||||||
|
copyRegion.size = vertexBufferSize;
|
||||||
|
vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, glTFScene.vertices.buffer, 1, ©Region);
|
||||||
|
|
||||||
|
copyRegion.size = indexBufferSize;
|
||||||
|
vkCmdCopyBuffer(copyCmd, indexStaging.buffer, glTFScene.indices.buffer, 1, ©Region);
|
||||||
|
|
||||||
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
||||||
|
|
||||||
|
// Free staging resources
|
||||||
|
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
|
||||||
|
vkFreeMemory(device, vertexStaging.memory, nullptr);
|
||||||
|
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
|
||||||
|
vkFreeMemory(device, indexStaging.memory, nullptr);
|
||||||
|
|
||||||
|
/*
|
||||||
|
Interleaved vertex attributes
|
||||||
|
We create one single buffer containing the interleaved vertex attributes
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
Separate vertex attributes
|
||||||
|
We create a separate buffer for each of the vertex attributes (position, normals, etc.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
std::array<vks::Buffer, 4> stagingBuffers;
|
||||||
|
createStagingBuffer(stagingBuffers[0], glTFScene.vertexAttributes.pos.data(), glTFScene.vertexAttributes.pos.size() * sizeof(glTFScene.vertexAttributes.pos[0]));
|
||||||
|
createStagingBuffer(stagingBuffers[1], glTFScene.vertexAttributes.normal.data(), glTFScene.vertexAttributes.normal.size() * sizeof(glTFScene.vertexAttributes.normal[0]));
|
||||||
|
createStagingBuffer(stagingBuffers[2], glTFScene.vertexAttributes.uv.data(), glTFScene.vertexAttributes.uv.size() * sizeof(glTFScene.vertexAttributes.uv[0]));
|
||||||
|
createStagingBuffer(stagingBuffers[3], glTFScene.vertexAttributes.tangent.data(), glTFScene.vertexAttributes.tangent.size() * sizeof(glTFScene.vertexAttributes.tangent[0]));
|
||||||
|
|
||||||
|
createDeviceBuffer(vertexAttibuteBuffers.pos, stagingBuffers[0].size);
|
||||||
|
createDeviceBuffer(vertexAttibuteBuffers.normal, stagingBuffers[1].size);
|
||||||
|
createDeviceBuffer(vertexAttibuteBuffers.uv, stagingBuffers[2].size);
|
||||||
|
createDeviceBuffer(vertexAttibuteBuffers.tangent, stagingBuffers[3].size);
|
||||||
|
|
||||||
|
// Stage
|
||||||
|
std::vector<vks::Buffer> attributeBuffers = {
|
||||||
|
vertexAttibuteBuffers.pos,
|
||||||
|
vertexAttibuteBuffers.normal,
|
||||||
|
vertexAttibuteBuffers.uv,
|
||||||
|
vertexAttibuteBuffers.tangent,
|
||||||
|
};
|
||||||
|
|
||||||
|
// Copy data from staging buffers (host) do device local buffer (gpu)
|
||||||
|
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||||
|
copyRegion = {};
|
||||||
|
for (size_t i = 0; i < attributeBuffers.size(); i++) {
|
||||||
|
copyRegion.size = attributeBuffers[i].size;
|
||||||
|
vkCmdCopyBuffer(copyCmd, stagingBuffers[i].buffer, attributeBuffers[i].buffer, 1, ©Region);
|
||||||
|
}
|
||||||
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
||||||
|
|
||||||
|
/*
|
||||||
|
Index buffer
|
||||||
|
The index buffer is always the same, no matter how we pass the vertex attributes
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
// @todo: clear
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::loadAssets()
|
||||||
|
{
|
||||||
|
loadglTFFile(getAssetPath() + "models/sponza/sponza.gltf");
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::setupDescriptors()
|
||||||
|
{
|
||||||
|
// One ubo to pass dynamic data to the shader
|
||||||
|
// Two combined image samplers per material as each material uses color and normal maps
|
||||||
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||||
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
||||||
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFScene.materials.size()) * 2),
|
||||||
|
};
|
||||||
|
// One set for matrices and one per model image/texture
|
||||||
|
const uint32_t maxSetCount = static_cast<uint32_t>(glTFScene.images.size()) + 1;
|
||||||
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
|
||||||
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||||
|
// Descriptor set layout for passing matrices
|
||||||
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||||
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
|
||||||
|
};
|
||||||
|
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
|
||||||
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
|
||||||
|
// Descriptor set layout for passing material textures
|
||||||
|
setLayoutBindings = {
|
||||||
|
// Color map
|
||||||
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
||||||
|
// Normal map
|
||||||
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
|
||||||
|
};
|
||||||
|
descriptorSetLayoutCI.pBindings = setLayoutBindings.data();
|
||||||
|
descriptorSetLayoutCI.bindingCount = 2;
|
||||||
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
|
||||||
|
|
||||||
|
// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
|
||||||
|
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures };
|
||||||
|
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
|
||||||
|
// We will use push constants to push the local matrices of a primitive to the vertex shader
|
||||||
|
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushConstBlock), 0);
|
||||||
|
// Push constant ranges are part of the pipeline layout
|
||||||
|
pipelineLayoutCI.pushConstantRangeCount = 1;
|
||||||
|
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
|
||||||
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
||||||
|
|
||||||
|
// Descriptor set for scene matrices
|
||||||
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
|
||||||
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
||||||
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
|
||||||
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
||||||
|
|
||||||
|
// Descriptor sets for the materials
|
||||||
|
for (auto& material : glTFScene.materials) {
|
||||||
|
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
|
||||||
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.descriptorSet));
|
||||||
|
VkDescriptorImageInfo colorMap = glTFScene.getTextureDescriptor(material.baseColorTextureIndex);
|
||||||
|
VkDescriptorImageInfo normalMap = glTFScene.getTextureDescriptor(material.normalTextureIndex);
|
||||||
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||||
|
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorMap),
|
||||||
|
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &normalMap),
|
||||||
|
};
|
||||||
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::preparePipelines()
|
||||||
|
{
|
||||||
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||||
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
||||||
|
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||||
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
|
||||||
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||||
|
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||||
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||||
|
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||||
|
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
|
||||||
|
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||||
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
||||||
|
|
||||||
|
// @todo: comment
|
||||||
|
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsInterleaved = {
|
||||||
|
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFScene::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||||
|
};
|
||||||
|
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesInterleaved = {
|
||||||
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, pos)),
|
||||||
|
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, normal)),
|
||||||
|
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, uv)),
|
||||||
|
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, tangent)),
|
||||||
|
};
|
||||||
|
|
||||||
|
// @todo: comment
|
||||||
|
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsSeparate = {
|
||||||
|
vks::initializers::vertexInputBindingDescription(0, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||||
|
vks::initializers::vertexInputBindingDescription(1, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||||
|
vks::initializers::vertexInputBindingDescription(2, sizeof(glm::vec2), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||||
|
vks::initializers::vertexInputBindingDescription(3, sizeof(glm::vec4), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||||
|
};
|
||||||
|
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesSeparate = {
|
||||||
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||||
|
vks::initializers::vertexInputAttributeDescription(1, 1, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||||
|
vks::initializers::vertexInputAttributeDescription(2, 2, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||||
|
vks::initializers::vertexInputAttributeDescription(3, 3, VK_FORMAT_R32G32B32_SFLOAT, 0),
|
||||||
|
};
|
||||||
|
|
||||||
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
||||||
|
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
||||||
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
||||||
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
||||||
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
||||||
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
||||||
|
pipelineCI.pViewportState = &viewportStateCI;
|
||||||
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
||||||
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
||||||
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||||
|
pipelineCI.pStages = shaderStages.data();
|
||||||
|
|
||||||
|
shaderStages[0] = loadShader(getShadersPath() + "vertexattributes/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||||
|
shaderStages[1] = loadShader(getShadersPath() + "vertexattributes/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||||
|
|
||||||
|
//rasterizationStateCI.cullMode = material.doubleSided ? VK_CULL_MODE_NONE : VK_CULL_MODE_BACK_BIT;
|
||||||
|
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsInterleaved, vertexInputAttributesInterleaved);
|
||||||
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesInterleaved));
|
||||||
|
|
||||||
|
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsSeparate, vertexInputAttributesSeparate);
|
||||||
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesSeparate));
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::prepareUniformBuffers()
|
||||||
|
{
|
||||||
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||||
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||||
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||||
|
&shaderData.buffer,
|
||||||
|
sizeof(shaderData.values)));
|
||||||
|
VK_CHECK_RESULT(shaderData.buffer.map());
|
||||||
|
updateUniformBuffers();
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::updateUniformBuffers()
|
||||||
|
{
|
||||||
|
shaderData.values.projection = camera.matrices.perspective;
|
||||||
|
shaderData.values.view = camera.matrices.view;
|
||||||
|
shaderData.values.viewPos = camera.viewPos;
|
||||||
|
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::prepare()
|
||||||
|
{
|
||||||
|
VulkanExampleBase::prepare();
|
||||||
|
loadAssets();
|
||||||
|
prepareUniformBuffers();
|
||||||
|
setupDescriptors();
|
||||||
|
preparePipelines();
|
||||||
|
buildCommandBuffers();
|
||||||
|
prepared = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::render()
|
||||||
|
{
|
||||||
|
renderFrame();
|
||||||
|
if (camera.updated) {
|
||||||
|
updateUniformBuffers();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay)
|
||||||
|
{
|
||||||
|
if (overlay->header("Vertex buffer attributes")) {
|
||||||
|
bool interleaved = (vertexAttributeSettings == VertexAttributeSettings::interleaved);
|
||||||
|
bool separate = (vertexAttributeSettings == VertexAttributeSettings::separate);
|
||||||
|
if (overlay->radioButton("Interleaved", interleaved)) {
|
||||||
|
vertexAttributeSettings = VertexAttributeSettings::interleaved;
|
||||||
|
buildCommandBuffers();
|
||||||
|
}
|
||||||
|
if (overlay->radioButton("Separate", separate)) {
|
||||||
|
vertexAttributeSettings = VertexAttributeSettings::separate;
|
||||||
|
buildCommandBuffers();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
VULKAN_EXAMPLE_MAIN()
|
||||||
176
examples/vertexattributes/vertexattributes.h
Normal file
176
examples/vertexattributes/vertexattributes.h
Normal file
|
|
@ -0,0 +1,176 @@
|
||||||
|
/*
|
||||||
|
* Vulkan Example - Passing vertex attributes using interleaved and separate buffers
|
||||||
|
*
|
||||||
|
* Copyright (C) 2021 by Sascha Willems - www.saschawillems.de
|
||||||
|
*
|
||||||
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define TINYGLTF_IMPLEMENTATION
|
||||||
|
#define STB_IMAGE_IMPLEMENTATION
|
||||||
|
#define TINYGLTF_NO_STB_IMAGE_WRITE
|
||||||
|
#define TINYGLTF_NO_STB_IMAGE
|
||||||
|
#define TINYGLTF_NO_EXTERNAL_IMAGE
|
||||||
|
#ifdef VK_USE_PLATFORM_ANDROID_KHR
|
||||||
|
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
|
||||||
|
#endif
|
||||||
|
#include "tiny_gltf.h"
|
||||||
|
|
||||||
|
#include "vulkanexamplebase.h"
|
||||||
|
|
||||||
|
#define ENABLE_VALIDATION false
|
||||||
|
|
||||||
|
struct PushConstBlock {
|
||||||
|
glm::mat4 nodeMatrix;
|
||||||
|
uint32_t alphaMask;
|
||||||
|
float alphaMaskCutoff;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Contains everything required to render a basic glTF scene in Vulkan
|
||||||
|
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
|
||||||
|
class VulkanglTFScene
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
// The class requires some Vulkan objects so it can create it's own resources
|
||||||
|
vks::VulkanDevice* vulkanDevice;
|
||||||
|
VkQueue copyQueue;
|
||||||
|
|
||||||
|
// The vertex layout for the samples' model
|
||||||
|
struct Vertex {
|
||||||
|
glm::vec3 pos;
|
||||||
|
glm::vec3 normal;
|
||||||
|
glm::vec2 uv;
|
||||||
|
glm::vec4 tangent;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Single vertex buffer for all primitives
|
||||||
|
vks::Buffer vertices;
|
||||||
|
|
||||||
|
// Used at loading time
|
||||||
|
struct VertexAttributes {
|
||||||
|
std::vector<glm::vec2> uv;
|
||||||
|
std::vector<glm::vec3> pos, normal;
|
||||||
|
std::vector<glm::vec4> tangent;
|
||||||
|
} vertexAttributes;
|
||||||
|
|
||||||
|
// Single index buffer for all primitives
|
||||||
|
vks::Buffer indices;
|
||||||
|
|
||||||
|
// The following structures roughly represent the glTF scene structure
|
||||||
|
// To keep things simple, they only contain those properties that are required for this sample
|
||||||
|
struct Node;
|
||||||
|
|
||||||
|
// A primitive contains the data for a single draw call
|
||||||
|
struct Primitive {
|
||||||
|
uint32_t firstIndex;
|
||||||
|
uint32_t indexCount;
|
||||||
|
int32_t materialIndex;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
|
||||||
|
struct Mesh {
|
||||||
|
std::vector<Primitive> primitives;
|
||||||
|
};
|
||||||
|
|
||||||
|
// A node represents an object in the glTF scene graph
|
||||||
|
struct Node {
|
||||||
|
Node* parent;
|
||||||
|
std::vector<Node> children;
|
||||||
|
Mesh mesh;
|
||||||
|
glm::mat4 matrix;
|
||||||
|
std::string name;
|
||||||
|
bool visible = true;
|
||||||
|
};
|
||||||
|
|
||||||
|
// A glTF material stores information in e.g. the texture that is attached to it and colors
|
||||||
|
struct Material {
|
||||||
|
glm::vec4 baseColorFactor = glm::vec4(1.0f);
|
||||||
|
uint32_t baseColorTextureIndex;
|
||||||
|
uint32_t normalTextureIndex;
|
||||||
|
std::string alphaMode = "OPAQUE";
|
||||||
|
float alphaCutOff;
|
||||||
|
bool doubleSided = false;
|
||||||
|
VkDescriptorSet descriptorSet;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Contains the texture for a single glTF image
|
||||||
|
// Images may be reused by texture objects and are as such separated
|
||||||
|
struct Image {
|
||||||
|
vks::Texture2D texture;
|
||||||
|
};
|
||||||
|
|
||||||
|
// A glTF texture stores a reference to the image and a sampler
|
||||||
|
// In this sample, we are only interested in the image
|
||||||
|
struct Texture {
|
||||||
|
int32_t imageIndex;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
Model data
|
||||||
|
*/
|
||||||
|
std::vector<Image> images;
|
||||||
|
std::vector<Texture> textures;
|
||||||
|
std::vector<Material> materials;
|
||||||
|
std::vector<Node> nodes;
|
||||||
|
|
||||||
|
std::string path;
|
||||||
|
|
||||||
|
~VulkanglTFScene();
|
||||||
|
VkDescriptorImageInfo getTextureDescriptor(const size_t index);
|
||||||
|
void loadImages(tinygltf::Model& input);
|
||||||
|
void loadTextures(tinygltf::Model& input);
|
||||||
|
void loadMaterials(tinygltf::Model& input);
|
||||||
|
void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFScene::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFScene::Vertex>& vertexBuffer);
|
||||||
|
void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFScene::Node node, bool separate);
|
||||||
|
};
|
||||||
|
|
||||||
|
class VulkanExample : public VulkanExampleBase
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
VulkanglTFScene glTFScene;
|
||||||
|
|
||||||
|
enum VertexAttributeSettings { interleaved, separate };
|
||||||
|
VertexAttributeSettings vertexAttributeSettings = separate;
|
||||||
|
|
||||||
|
// Buffers for the separate vertex attributes
|
||||||
|
struct VertexAttributeBuffers {
|
||||||
|
vks::Buffer pos, normal, uv, tangent;
|
||||||
|
} vertexAttibuteBuffers;
|
||||||
|
|
||||||
|
struct ShaderData {
|
||||||
|
vks::Buffer buffer;
|
||||||
|
struct Values {
|
||||||
|
glm::mat4 projection;
|
||||||
|
glm::mat4 view;
|
||||||
|
glm::vec4 lightPos = glm::vec4(0.0f, 2.5f, 0.0f, 1.0f);
|
||||||
|
glm::vec4 viewPos;
|
||||||
|
} values;
|
||||||
|
} shaderData;
|
||||||
|
|
||||||
|
struct Pipelines {
|
||||||
|
VkPipeline vertexAttributesInterleaved;
|
||||||
|
VkPipeline vertexAttributesSeparate;
|
||||||
|
} pipelines;
|
||||||
|
|
||||||
|
VkPipelineLayout pipelineLayout;
|
||||||
|
VkDescriptorSet descriptorSet;
|
||||||
|
|
||||||
|
struct DescriptorSetLayouts {
|
||||||
|
VkDescriptorSetLayout matrices;
|
||||||
|
VkDescriptorSetLayout textures;
|
||||||
|
} descriptorSetLayouts;
|
||||||
|
|
||||||
|
VulkanExample();
|
||||||
|
~VulkanExample();
|
||||||
|
virtual void getEnabledFeatures();
|
||||||
|
void buildCommandBuffers();
|
||||||
|
void loadglTFFile(std::string filename);
|
||||||
|
void loadAssets();
|
||||||
|
void setupDescriptors();
|
||||||
|
void preparePipelines();
|
||||||
|
void prepareUniformBuffers();
|
||||||
|
void updateUniformBuffers();
|
||||||
|
void prepare();
|
||||||
|
virtual void render();
|
||||||
|
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay);
|
||||||
|
};
|
||||||
Loading…
Add table
Add a link
Reference in a new issue