Started working on sample showing comparing separate/interleaved vertex attributes

This commit is contained in:
Sascha Willems 2021-12-26 18:42:03 +01:00
parent 91958acad2
commit 5f1aac61ca
10 changed files with 929 additions and 0 deletions

View file

@ -434,6 +434,13 @@ namespace vks
return res; return res;
} }
bool UIOverlay::radioButton(const char* caption, bool value)
{
bool res = ImGui::RadioButton(caption, value);
if (res) { updated = true; };
return res;
}
bool UIOverlay::inputFloat(const char *caption, float *value, float step, uint32_t precision) bool UIOverlay::inputFloat(const char *caption, float *value, float step, uint32_t precision)
{ {
bool res = ImGui::InputFloat(caption, value, step, step * 10.0f, precision); bool res = ImGui::InputFloat(caption, value, step, step * 10.0f, precision);

View file

@ -81,6 +81,7 @@ namespace vks
bool header(const char* caption); bool header(const char* caption);
bool checkBox(const char* caption, bool* value); bool checkBox(const char* caption, bool* value);
bool checkBox(const char* caption, int32_t* value); bool checkBox(const char* caption, int32_t* value);
bool radioButton(const char* caption, bool value);
bool inputFloat(const char* caption, float* value, float step, uint32_t precision); bool inputFloat(const char* caption, float* value, float step, uint32_t precision);
bool sliderFloat(const char* caption, float* value, float min, float max); bool sliderFloat(const char* caption, float* value, float min, float max);
bool sliderInt(const char* caption, int32_t* value, int32_t min, int32_t max); bool sliderInt(const char* caption, int32_t* value, int32_t min, int32_t max);

View file

@ -0,0 +1,43 @@
#version 450
layout (set = 1, binding = 0) uniform sampler2D samplerColorMap;
layout (set = 1, binding = 1) uniform sampler2D samplerNormalMap;
layout (location = 0) in vec3 inNormal;
layout (location = 1) in vec2 inUV;
layout (location = 2) in vec3 inViewVec;
layout (location = 3) in vec3 inLightVec;
layout (location = 4) in vec4 inTangent;
layout (location = 0) out vec4 outFragColor;
layout(push_constant) uniform PushConsts {
mat4 model;
uint alphaMask;
float alphaMaskCuttoff;
} pushConsts;
void main()
{
vec4 color = texture(samplerColorMap, inUV);
if (pushConsts.alphaMask == 1) {
if (color.a < pushConsts.alphaMaskCuttoff) {
discard;
}
}
vec3 N = normalize(inNormal);
vec3 T = normalize(inTangent.xyz);
vec3 B = cross(inNormal, inTangent.xyz) * inTangent.w;
mat3 TBN = mat3(T, B, N);
N = TBN * normalize(texture(samplerNormalMap, inUV).xyz * 2.0 - vec3(1.0));
const float ambient = 0.1;
vec3 L = normalize(inLightVec);
vec3 V = normalize(inViewVec);
vec3 R = reflect(-L, N);
vec3 diffuse = max(dot(N, L), ambient).rrr;
float specular = pow(max(dot(R, V), 0.0), 32.0);
outFragColor = vec4(diffuse * color.rgb + specular, color.a);
}

Binary file not shown.

View file

@ -0,0 +1,39 @@
#version 450
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec2 inUV;
layout (location = 3) in vec4 inTangent;
layout (set = 0, binding = 0) uniform UBOScene
{
mat4 projection;
mat4 view;
vec4 lightPos;
vec4 viewPos;
} uboScene;
layout(push_constant) uniform PushConsts {
mat4 model;
uint alphaMask;
float alphaMaskCuttoff;
} pushConsts;
layout (location = 0) out vec3 outNormal;
layout (location = 1) out vec2 outUV;
layout (location = 2) out vec3 outViewVec;
layout (location = 3) out vec3 outLightVec;
layout (location = 4) out vec4 outTangent;
void main()
{
outNormal = inNormal;
outUV = inUV;
outTangent = inTangent;
gl_Position = uboScene.projection * uboScene.view * pushConsts.model * vec4(inPos.xyz, 1.0);
outNormal = mat3(pushConsts.model) * inNormal;
vec4 pos = pushConsts.model * vec4(inPos, 1.0);
outLightVec = uboScene.lightPos.xyz - pos.xyz;
outViewVec = uboScene.viewPos.xyz - pos.xyz;
}

Binary file not shown.

View file

@ -136,6 +136,7 @@ set(EXAMPLES
texturesparseresidency texturesparseresidency
triangle triangle
variablerateshading variablerateshading
vertexattributes
viewportarray viewportarray
vulkanscene vulkanscene
) )

View file

@ -0,0 +1,5 @@
# Vertex attributes
## Synopsis
This sample demonstrates how to pass vertex attributes using interleaved or separate buffers.

View file

@ -0,0 +1,657 @@
/*
* Vulkan Example - Passing vertex attributes using interleaved and separate buffers
*
* Copyright (C) 2021 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vertexattributes.h"
/*
Vulkan glTF scene class
*/
VulkanglTFScene::~VulkanglTFScene()
{
// Release all Vulkan resources allocated for the model
vertices.destroy();
indices.destroy();
for (Image image : images) {
vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr);
vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr);
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
}
}
/*
glTF loading functions
The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
*/
void VulkanglTFScene::loadImages(tinygltf::Model& input)
{
// POI: The textures for the glTF file used in this sample are stored as external ktx files, so we can directly load them from disk without the need for conversion
images.resize(input.images.size());
for (size_t i = 0; i < input.images.size(); i++) {
tinygltf::Image& glTFImage = input.images[i];
images[i].texture.loadFromFile(path + "/" + glTFImage.uri, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, copyQueue);
}
}
void VulkanglTFScene::loadTextures(tinygltf::Model& input)
{
textures.resize(input.textures.size());
for (size_t i = 0; i < input.textures.size(); i++) {
textures[i].imageIndex = input.textures[i].source;
}
}
void VulkanglTFScene::loadMaterials(tinygltf::Model& input)
{
materials.resize(input.materials.size());
for (size_t i = 0; i < input.materials.size(); i++) {
// We only read the most basic properties required for our sample
tinygltf::Material glTFMaterial = input.materials[i];
// Get the base color factor
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
}
// Get base color texture index
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
}
// Get the normal map texture index
if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) {
materials[i].normalTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex();
}
// Get some additional material parameters that are used in this sample
materials[i].alphaMode = glTFMaterial.alphaMode;
materials[i].alphaCutOff = (float)glTFMaterial.alphaCutoff;
materials[i].doubleSided = glTFMaterial.doubleSided;
}
}
void VulkanglTFScene::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFScene::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFScene::Vertex>& vertexBuffer)
{
VulkanglTFScene::Node node{};
node.name = inputNode.name;
// Get the local node matrix
// It's either made up from translation, rotation, scale or a 4x4 matrix
node.matrix = glm::mat4(1.0f);
if (inputNode.translation.size() == 3) {
node.matrix = glm::translate(node.matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
}
if (inputNode.rotation.size() == 4) {
glm::quat q = glm::make_quat(inputNode.rotation.data());
node.matrix *= glm::mat4(q);
}
if (inputNode.scale.size() == 3) {
node.matrix = glm::scale(node.matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
}
if (inputNode.matrix.size() == 16) {
node.matrix = glm::make_mat4x4(inputNode.matrix.data());
};
// Load node's children
if (inputNode.children.size() > 0) {
for (size_t i = 0; i < inputNode.children.size(); i++) {
loadNode(input.nodes[inputNode.children[i]], input, &node, indexBuffer, vertexBuffer);
}
}
// If the node contains mesh data, we load vertices and indices from the buffers
// In glTF this is done via accessors and buffer views
if (inputNode.mesh > -1) {
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
// Iterate through all primitives of this node's mesh
for (size_t i = 0; i < mesh.primitives.size(); i++) {
const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
uint32_t indexCount = 0;
// Vertex attributes
const float* positionBuffer = nullptr;
const float* normalsBuffer = nullptr;
const float* texCoordsBuffer = nullptr;
const float* tangentsBuffer = nullptr;
size_t vertexCount = 0;
// Get buffer data for vertex positions
if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
positionBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
vertexCount = accessor.count;
}
// Get buffer data for vertex normals
if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
normalsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// Get buffer data for vertex texture coordinates
// glTF supports multiple sets, we only load the first one
if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
texCoordsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// POI: This sample uses normal mapping, so we also need to load the tangents from the glTF file
if (glTFPrimitive.attributes.find("TANGENT") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TANGENT")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
tangentsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// Append data to model's vertex buffer
for (size_t v = 0; v < vertexCount; v++) {
// Append interleaved attributes
Vertex vert{};
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
vert.tangent = tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f);
vertexBuffer.push_back(vert);
// Append separate attributes
vertexAttributes.pos.push_back(glm::make_vec3(&positionBuffer[v * 3]));
vertexAttributes.normal.push_back(glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))));
vertexAttributes.tangent.push_back(tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f));
vertexAttributes.uv.push_back(texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f));
}
// Indices
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
indexCount += static_cast<uint32_t>(accessor.count);
// glTF supports different component types of indices
switch (accessor.componentType) {
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
default:
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
return;
}
Primitive primitive{};
primitive.firstIndex = firstIndex;
primitive.indexCount = indexCount;
primitive.materialIndex = glTFPrimitive.material;
node.mesh.primitives.push_back(primitive);
}
}
if (parent) {
parent->children.push_back(node);
}
else {
nodes.push_back(node);
}
}
VkDescriptorImageInfo VulkanglTFScene::getTextureDescriptor(const size_t index)
{
return images[index].texture.descriptor;
}
/*
glTF rendering functions
*/
// Draw a single node including child nodes (if present)
void VulkanglTFScene::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFScene::Node node, bool separate)
{
if (!node.visible) {
return;
}
if (node.mesh.primitives.size() > 0) {
// Pass the node's matrix via push constants
// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
PushConstBlock pushConstBlock;
glm::mat4 nodeMatrix = node.matrix;
VulkanglTFScene::Node* currentParent = node.parent;
while (currentParent) {
nodeMatrix = currentParent->matrix * nodeMatrix;
currentParent = currentParent->parent;
}
for (VulkanglTFScene::Primitive& primitive : node.mesh.primitives) {
if (primitive.indexCount > 0) {
VulkanglTFScene::Material& material = materials[primitive.materialIndex];
pushConstBlock.nodeMatrix = nodeMatrix;
pushConstBlock.alphaMask = (material.alphaMode == "MASK");
pushConstBlock.alphaMaskCutoff = material.alphaCutOff;
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &material.descriptorSet, 0, nullptr);
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
}
}
}
for (auto& child : node.children) {
drawNode(commandBuffer, pipelineLayout, child, separate);
}
}
/*
Vulkan Example class
*/
VulkanExample::VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Separate vertex attribute buffers";
camera.type = Camera::CameraType::firstperson;
camera.flipY = true;
camera.setPosition(glm::vec3(0.0f, 1.0f, 0.0f));
camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
VulkanExample::~VulkanExample()
{
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
shaderData.buffer.destroy();
}
void VulkanExample::getEnabledFeatures()
{
enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy;
}
void VulkanExample::buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Select the separate or interleaved vertex binding pipeline
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, vertexAttributeSettings == VertexAttributeSettings::separate ? pipelines.vertexAttributesSeparate : pipelines.vertexAttributesInterleaved);
// Bind scene matrices descriptor to set 0
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
// Use the same index buffer, no matter how vertex attributes are passed
vkCmdBindIndexBuffer(drawCmdBuffers[i], glTFScene.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
if (vertexAttributeSettings == VertexAttributeSettings::separate) {
// Using separate vertex attribute bindings requires binding all attribute buffers
VkDeviceSize offsets[4] = { 0, 0, 0, 0 };
std::array<VkBuffer, 4> buffers = { vertexAttibuteBuffers.pos.buffer, vertexAttibuteBuffers.normal.buffer, vertexAttibuteBuffers.uv.buffer, vertexAttibuteBuffers.tangent.buffer };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, static_cast<uint32_t>(buffers.size()), buffers.data(), offsets);
} else {
// Using interleaved attribute bindings only requires one buffer bind
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &glTFScene.vertices.buffer, offsets);
}
// Render all nodes starting at top-level
for (auto& node : glTFScene.nodes) {
glTFScene.drawNode(drawCmdBuffers[i], pipelineLayout, node, vertexAttributeSettings == VertexAttributeSettings::separate);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void VulkanExample::loadglTFFile(std::string filename)
{
tinygltf::Model glTFInput;
tinygltf::TinyGLTF gltfContext;
std::string error, warning;
this->device = device;
#if defined(__ANDROID__)
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
// We let tinygltf handle this, by passing the asset manager of our app
tinygltf::asset_manager = androidApp->activity->assetManager;
#endif
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
// Pass some Vulkan resources required for setup and rendering to the glTF model loading class
glTFScene.vulkanDevice = vulkanDevice;
glTFScene.copyQueue = queue;
size_t pos = filename.find_last_of('/');
glTFScene.path = filename.substr(0, pos);
std::vector<uint32_t> indexBuffer;
std::vector<VulkanglTFScene::Vertex> vertexBuffer;
if (!fileLoaded) {
vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
return;
}
glTFScene.loadImages(glTFInput);
glTFScene.loadMaterials(glTFInput);
glTFScene.loadTextures(glTFInput);
const tinygltf::Scene& scene = glTFInput.scenes[0];
for (size_t i = 0; i < scene.nodes.size(); i++) {
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
glTFScene.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer);
}
/* Upload vertex and index buffers */
/* Anonymous functions to simplify buffer creation */
/* Create a staging buffer used as a source for copies */
auto createStagingBuffer = [this](vks::Buffer& buffer, void* data, VkDeviceSize size) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffer, size, data));
};
/* Create a device local buffer used as a target for copies*/
auto createDeviceBuffer = [this](vks::Buffer& buffer, VkDeviceSize size, VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &buffer, size));
};
size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFScene::Vertex);
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
vks::Buffer vertexStaging, indexStaging;
createStagingBuffer(indexStaging, indexBuffer.data(), indexBufferSize);
createStagingBuffer(vertexStaging, vertexBuffer.data(), vertexBufferSize);
createDeviceBuffer(glTFScene.indices, indexStaging.size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
createDeviceBuffer(glTFScene.vertices, vertexStaging.size);
// Copy data from staging buffers (host) do device local buffer (gpu)
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, glTFScene.vertices.buffer, 1, &copyRegion);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, indexStaging.buffer, glTFScene.indices.buffer, 1, &copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Free staging resources
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
vkFreeMemory(device, vertexStaging.memory, nullptr);
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
vkFreeMemory(device, indexStaging.memory, nullptr);
/*
Interleaved vertex attributes
We create one single buffer containing the interleaved vertex attributes
*/
/*
Separate vertex attributes
We create a separate buffer for each of the vertex attributes (position, normals, etc.)
*/
std::array<vks::Buffer, 4> stagingBuffers;
createStagingBuffer(stagingBuffers[0], glTFScene.vertexAttributes.pos.data(), glTFScene.vertexAttributes.pos.size() * sizeof(glTFScene.vertexAttributes.pos[0]));
createStagingBuffer(stagingBuffers[1], glTFScene.vertexAttributes.normal.data(), glTFScene.vertexAttributes.normal.size() * sizeof(glTFScene.vertexAttributes.normal[0]));
createStagingBuffer(stagingBuffers[2], glTFScene.vertexAttributes.uv.data(), glTFScene.vertexAttributes.uv.size() * sizeof(glTFScene.vertexAttributes.uv[0]));
createStagingBuffer(stagingBuffers[3], glTFScene.vertexAttributes.tangent.data(), glTFScene.vertexAttributes.tangent.size() * sizeof(glTFScene.vertexAttributes.tangent[0]));
createDeviceBuffer(vertexAttibuteBuffers.pos, stagingBuffers[0].size);
createDeviceBuffer(vertexAttibuteBuffers.normal, stagingBuffers[1].size);
createDeviceBuffer(vertexAttibuteBuffers.uv, stagingBuffers[2].size);
createDeviceBuffer(vertexAttibuteBuffers.tangent, stagingBuffers[3].size);
// Stage
std::vector<vks::Buffer> attributeBuffers = {
vertexAttibuteBuffers.pos,
vertexAttibuteBuffers.normal,
vertexAttibuteBuffers.uv,
vertexAttibuteBuffers.tangent,
};
// Copy data from staging buffers (host) do device local buffer (gpu)
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion = {};
for (size_t i = 0; i < attributeBuffers.size(); i++) {
copyRegion.size = attributeBuffers[i].size;
vkCmdCopyBuffer(copyCmd, stagingBuffers[i].buffer, attributeBuffers[i].buffer, 1, &copyRegion);
}
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
/*
Index buffer
The index buffer is always the same, no matter how we pass the vertex attributes
*/
// @todo: clear
}
void VulkanExample::loadAssets()
{
loadglTFFile(getAssetPath() + "models/sponza/sponza.gltf");
}
void VulkanExample::setupDescriptors()
{
// One ubo to pass dynamic data to the shader
// Two combined image samplers per material as each material uses color and normal maps
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFScene.materials.size()) * 2),
};
// One set for matrices and one per model image/texture
const uint32_t maxSetCount = static_cast<uint32_t>(glTFScene.images.size()) + 1;
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layout for passing matrices
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
// Descriptor set layout for passing material textures
setLayoutBindings = {
// Color map
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
// Normal map
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
descriptorSetLayoutCI.pBindings = setLayoutBindings.data();
descriptorSetLayoutCI.bindingCount = 2;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures };
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
// We will use push constants to push the local matrices of a primitive to the vertex shader
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushConstBlock), 0);
// Push constant ranges are part of the pipeline layout
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Descriptor set for scene matrices
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
// Descriptor sets for the materials
for (auto& material : glTFScene.materials) {
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.descriptorSet));
VkDescriptorImageInfo colorMap = glTFScene.getTextureDescriptor(material.baseColorTextureIndex);
VkDescriptorImageInfo normalMap = glTFScene.getTextureDescriptor(material.normalTextureIndex);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorMap),
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &normalMap),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
}
void VulkanExample::preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// @todo: comment
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsInterleaved = {
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFScene::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesInterleaved = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, pos)),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, normal)),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, uv)),
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, tangent)),
};
// @todo: comment
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsSeparate = {
vks::initializers::vertexInputBindingDescription(0, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX),
vks::initializers::vertexInputBindingDescription(1, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX),
vks::initializers::vertexInputBindingDescription(2, sizeof(glm::vec2), VK_VERTEX_INPUT_RATE_VERTEX),
vks::initializers::vertexInputBindingDescription(3, sizeof(glm::vec4), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesSeparate = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0),
vks::initializers::vertexInputAttributeDescription(1, 1, VK_FORMAT_R32G32B32_SFLOAT, 0),
vks::initializers::vertexInputAttributeDescription(2, 2, VK_FORMAT_R32G32B32_SFLOAT, 0),
vks::initializers::vertexInputAttributeDescription(3, 3, VK_FORMAT_R32G32B32_SFLOAT, 0),
};
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
shaderStages[0] = loadShader(getShadersPath() + "vertexattributes/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "vertexattributes/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
//rasterizationStateCI.cullMode = material.doubleSided ? VK_CULL_MODE_NONE : VK_CULL_MODE_BACK_BIT;
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsInterleaved, vertexInputAttributesInterleaved);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesInterleaved));
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsSeparate, vertexInputAttributesSeparate);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesSeparate));
}
void VulkanExample::prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&shaderData.buffer,
sizeof(shaderData.values)));
VK_CHECK_RESULT(shaderData.buffer.map());
updateUniformBuffers();
}
void VulkanExample::updateUniformBuffers()
{
shaderData.values.projection = camera.matrices.perspective;
shaderData.values.view = camera.matrices.view;
shaderData.values.viewPos = camera.viewPos;
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
}
void VulkanExample::prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void VulkanExample::render()
{
renderFrame();
if (camera.updated) {
updateUniformBuffers();
}
}
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Vertex buffer attributes")) {
bool interleaved = (vertexAttributeSettings == VertexAttributeSettings::interleaved);
bool separate = (vertexAttributeSettings == VertexAttributeSettings::separate);
if (overlay->radioButton("Interleaved", interleaved)) {
vertexAttributeSettings = VertexAttributeSettings::interleaved;
buildCommandBuffers();
}
if (overlay->radioButton("Separate", separate)) {
vertexAttributeSettings = VertexAttributeSettings::separate;
buildCommandBuffers();
}
}
}
VULKAN_EXAMPLE_MAIN()

View file

@ -0,0 +1,176 @@
/*
* Vulkan Example - Passing vertex attributes using interleaved and separate buffers
*
* Copyright (C) 2021 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#define TINYGLTF_NO_STB_IMAGE
#define TINYGLTF_NO_EXTERNAL_IMAGE
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
#endif
#include "tiny_gltf.h"
#include "vulkanexamplebase.h"
#define ENABLE_VALIDATION false
struct PushConstBlock {
glm::mat4 nodeMatrix;
uint32_t alphaMask;
float alphaMaskCutoff;
};
// Contains everything required to render a basic glTF scene in Vulkan
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
class VulkanglTFScene
{
public:
// The class requires some Vulkan objects so it can create it's own resources
vks::VulkanDevice* vulkanDevice;
VkQueue copyQueue;
// The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec4 tangent;
};
// Single vertex buffer for all primitives
vks::Buffer vertices;
// Used at loading time
struct VertexAttributes {
std::vector<glm::vec2> uv;
std::vector<glm::vec3> pos, normal;
std::vector<glm::vec4> tangent;
} vertexAttributes;
// Single index buffer for all primitives
vks::Buffer indices;
// The following structures roughly represent the glTF scene structure
// To keep things simple, they only contain those properties that are required for this sample
struct Node;
// A primitive contains the data for a single draw call
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
int32_t materialIndex;
};
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
struct Mesh {
std::vector<Primitive> primitives;
};
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
std::vector<Node> children;
Mesh mesh;
glm::mat4 matrix;
std::string name;
bool visible = true;
};
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
glm::vec4 baseColorFactor = glm::vec4(1.0f);
uint32_t baseColorTextureIndex;
uint32_t normalTextureIndex;
std::string alphaMode = "OPAQUE";
float alphaCutOff;
bool doubleSided = false;
VkDescriptorSet descriptorSet;
};
// Contains the texture for a single glTF image
// Images may be reused by texture objects and are as such separated
struct Image {
vks::Texture2D texture;
};
// A glTF texture stores a reference to the image and a sampler
// In this sample, we are only interested in the image
struct Texture {
int32_t imageIndex;
};
/*
Model data
*/
std::vector<Image> images;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Node> nodes;
std::string path;
~VulkanglTFScene();
VkDescriptorImageInfo getTextureDescriptor(const size_t index);
void loadImages(tinygltf::Model& input);
void loadTextures(tinygltf::Model& input);
void loadMaterials(tinygltf::Model& input);
void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFScene::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFScene::Vertex>& vertexBuffer);
void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFScene::Node node, bool separate);
};
class VulkanExample : public VulkanExampleBase
{
public:
VulkanglTFScene glTFScene;
enum VertexAttributeSettings { interleaved, separate };
VertexAttributeSettings vertexAttributeSettings = separate;
// Buffers for the separate vertex attributes
struct VertexAttributeBuffers {
vks::Buffer pos, normal, uv, tangent;
} vertexAttibuteBuffers;
struct ShaderData {
vks::Buffer buffer;
struct Values {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos = glm::vec4(0.0f, 2.5f, 0.0f, 1.0f);
glm::vec4 viewPos;
} values;
} shaderData;
struct Pipelines {
VkPipeline vertexAttributesInterleaved;
VkPipeline vertexAttributesSeparate;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
struct DescriptorSetLayouts {
VkDescriptorSetLayout matrices;
VkDescriptorSetLayout textures;
} descriptorSetLayouts;
VulkanExample();
~VulkanExample();
virtual void getEnabledFeatures();
void buildCommandBuffers();
void loadglTFFile(std::string filename);
void loadAssets();
void setupDescriptors();
void preparePipelines();
void prepareUniformBuffers();
void updateUniformBuffers();
void prepare();
virtual void render();
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay);
};