Scene uniform buffer for global matrices, keys, moved functionality from example to scene class

This commit is contained in:
saschawillems 2016-06-12 16:55:53 +02:00
parent de8dc8d501
commit 5f2a7fc537

View file

@ -34,16 +34,22 @@ struct Vertex {
// Scene related structs
// Shader properites for a material
// Will be passed to the shaders using push constant
struct SceneMaterialProperites
{
glm::vec4 ambient;
glm::vec4 diffuse;
glm::vec4 specular;
float opacity;
};
// Stores info on the materials used in the scene
struct SceneMaterial
{
std::string name;
// Properties
struct
{
glm::vec3 diffuse;
glm::vec3 specular;
} colors;
// Material properties
SceneMaterialProperites properties;
// The example only uses a diffuse channel
vkTools::VulkanTexture diffuse;
// The material's descriptor contains the material descriptors
@ -75,11 +81,7 @@ private:
VkDevice device;
VkQueue queue;
// todo
vkTools::UniformData *defaultUBO;
VkDescriptorPool descriptorPool;
// VkDescriptorSetLayout descriptorSetLayout;
// We will be using separate descriptor sets (and bindings)
// for material and scene related uniforms
@ -125,14 +127,17 @@ private:
aScene->mMaterials[i]->Get(AI_MATKEY_NAME, name);
// Properties
aiColor3D color;
aiColor4D color;
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_AMBIENT, color);
materials[i].properties.ambient = glm::make_vec4(&color.r);
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_DIFFUSE, color);
materials[i].colors.diffuse = glm::make_vec3(&color.r);
materials[i].properties.diffuse = glm::make_vec4(&color.r);
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_SPECULAR, color);
materials[i].colors.specular = glm::make_vec3(&color.r);
materials[i].properties.specular = glm::make_vec4(&color.r);
aScene->mMaterials[i]->Get(AI_MATKEY_OPACITY, materials[i].properties.opacity);
// todo : alpha blended materials
// illum 4 in mtl (e.g. window), not accessible via assimp?
if ((materials[i].properties.opacity) > 0.0f)
materials[i].properties.specular = glm::vec4(0.0f);
materials[i].name = name.C_Str();
std::cout << "Material \"" << materials[i].name << "\"" << std::endl;
@ -157,6 +162,9 @@ private:
// For scenes with multiple textures per material we would need to check for additional texture types, e.g.:
// aiTextureType_HEIGHT, aiTextureType_OPACITY, aiTextureType_SPECULAR, etc.
// Assign pipeline
materials[i].pipeline = (materials[i].properties.opacity == 0.0f) ? &pipelines.solid : &pipelines.blending;
}
// Generate descriptor sets for the materials
@ -201,7 +209,10 @@ private:
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
// We will be using a push constant block to pass material properties to the fragment shaders
VkPushConstantRange pushConstantRange = vkTools::initializers::pushConstantRange(VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec4) * 2, 0);
VkPushConstantRange pushConstantRange = vkTools::initializers::pushConstantRange(
VK_SHADER_STAGE_FRAGMENT_BIT,
sizeof(SceneMaterialProperites),
0);
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
@ -253,7 +264,7 @@ private:
descriptorSetScene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&defaultUBO->descriptor));
&uniformBuffer.descriptor));
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
@ -419,20 +430,51 @@ public:
std::vector<SceneMaterial> materials;
std::vector<SceneMesh> meshes;
// Same for all meshes in the scene
// Shared ubo containing matrices used by all
// materials and meshes
vkTools::UniformData uniformBuffer;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(8.15f, -1.8f, -0.0f, 0.0f);
} uniformData;
// Scene uses multiple pipelines
struct {
VkPipeline solid;
VkPipeline blending;
VkPipeline wireframe;
} pipelines;
// Shared pipeline layout
VkPipelineLayout pipelineLayout;
// For displaying only a single part of the scene
bool renderSingleScenePart = false;
uint32_t scenePartIndex = 0;
Scene(VkDevice device, VkQueue queue, VkPhysicalDeviceMemoryProperties memprops, vkTools::VulkanTextureLoader *textureloader, vkTools::UniformData *defaultUBO)
Scene(VkDevice device, VkQueue queue, VkPhysicalDeviceMemoryProperties memprops, vkTools::VulkanTextureLoader *textureloader)
{
this->device = device;
this->queue = queue;
this->deviceMemProps = memprops;
this->textureLoader = textureloader;
this->defaultUBO = defaultUBO;
// Prepare uniform buffer for global matrices
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uniformData));
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &uniformBuffer.buffer));
vkGetBufferMemoryRequirements(device, uniformBuffer.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &uniformBuffer.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBuffer.buffer, uniformBuffer.memory, 0));
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffer.memory, 0, sizeof(uniformData), 0, (void **)&uniformBuffer.mapped));
uniformBuffer.descriptor.offset = 0;
uniformBuffer.descriptor.buffer = uniformBuffer.buffer;
uniformBuffer.descriptor.range = sizeof(uniformData);
}
~Scene()
@ -452,13 +494,17 @@ public:
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.material, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.scene, nullptr);
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipeline(device, pipelines.blending, nullptr);
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
vkTools::destroyUniformData(device, &uniformBuffer);
}
void load(std::string filename, VkCommandBuffer copyCmd)
{
Assimp::Importer Importer;
int flags = aiProcess_PreTransformVertices | aiProcess_Triangulate | aiProcess_GenNormals | aiProcess_FixInfacingNormals;
int flags = aiProcess_PreTransformVertices | aiProcess_Triangulate | aiProcess_GenNormals;
#if defined(__ANDROID__)
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
@ -490,13 +536,17 @@ public:
// Renders the scene into an active command buffer
// In a real world application we would do some visibility culling in here
void render(VkCommandBuffer cmdBuffer)
void render(VkCommandBuffer cmdBuffer, bool wireframe)
{
VkDeviceSize offsets[1] = { 0 };
for (size_t i = 0; i < meshes.size(); i++)
{
if ((renderSingleScenePart) && (i != scenePartIndex))
continue;
//if (meshes[i].material->opacity == 0.0f)
// continue;
// todo : per material pipelines
// vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *mesh.material->pipeline);
@ -511,30 +561,25 @@ public:
// Set 1: Per-Material descriptor set containing bound images
descriptorSets[1] = meshes[i].material->descriptorSet;
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : *meshes[i].material->pipeline);
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, static_cast<uint32_t>(descriptorSets.size()), descriptorSets.data(), 0, NULL);
// Pass material properies via push constants
struct
{
glm::vec4 diffuse;
glm::vec4 specular;
} materialProps;
materialProps.diffuse = glm::vec4(meshes[i].material->colors.diffuse, 1.0f);
materialProps.specular = glm::vec4(meshes[i].material->colors.specular, 1.0f);
vkCmdPushConstants(
cmdBuffer,
pipelineLayout,
VK_SHADER_STAGE_FRAGMENT_BIT,
0,
sizeof(materialProps),
&materialProps);
sizeof(SceneMaterialProperites),
&meshes[i].material->properties);
vkCmdBindVertexBuffers(cmdBuffer, 0, 1, &meshes[i].vertexBuffer, offsets);
vkCmdBindIndexBuffer(cmdBuffer, meshes[i].indexBuffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuffer, meshes[i].indexCount, 1, 0, 0, 0);
}
// Render transparent objects last
}
};
@ -552,22 +597,6 @@ public:
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkTools::UniformData vsScene;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(8.15f, -1.8f, -0.0f, 0.0f);
} uboVS;
struct {
VkPipeline solid;
VkPipeline wireframe;
} pipelines;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
rotationSpeed = 0.5f;
@ -582,12 +611,6 @@ public:
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkTools::destroyUniformData(device, &uniformData.vsScene);
delete(scene);
}
@ -633,9 +656,7 @@ public:
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
scene->render(drawCmdBuffers[i]);
scene->render(drawCmdBuffers[i], wireframe);
vkCmdEndRenderPass(drawCmdBuffers[i]);
@ -692,24 +713,6 @@ public:
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
@ -721,7 +724,7 @@ public:
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
@ -759,10 +762,9 @@ public:
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// Solid rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/scenerendering/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/scenerendering/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
@ -783,46 +785,37 @@ public:
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.solid));
// Alpha blended pipeline
rasterizationState.cullMode = VK_CULL_MODE_NONE;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.blending));
// Wire frame rendering pipeline
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
blendAttachmentState.blendEnable = VK_FALSE;
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
rasterizationState.lineWidth = 1.0f;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireframe));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(uboVS),
nullptr,
&uniformData.vsScene.buffer,
&uniformData.vsScene.memory,
&uniformData.vsScene.descriptor);
updateUniformBuffers();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.wireframe));
}
void updateUniformBuffers()
{
if (attachLight)
{
uboVS.lightPos = glm::vec4(-camera.position, 1.0f);
scene->uniformData.lightPos = glm::vec4(-camera.position, 1.0f);
}
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
uboVS.model = glm::mat4();
scene->uniformData.projection = camera.matrices.perspective;
scene->uniformData.view = camera.matrices.view;
scene->uniformData.model = glm::mat4();
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsScene.memory);
memcpy(scene->uniformBuffer.mapped, &scene->uniformData, sizeof(scene->uniformData));
}
void draw()
@ -842,7 +835,7 @@ public:
void loadScene()
{
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
scene = new Scene(device, queue, deviceMemoryProperties, textureLoader, &uniformData.vsScene);
scene = new Scene(device, queue, deviceMemoryProperties, textureLoader);
#if defined(__ANDROID__)
scene->assetManager = androidApp->activity->assetManager;
@ -850,16 +843,15 @@ public:
scene->assetPath = getAssetPath() + "models/sibenik/";
scene->load(getAssetPath() + "models/sibenik/sibenik.dae", copyCmd);
vkFreeCommandBuffers(device, cmdPool, 1, &copyCmd);
updateUniformBuffers();
}
void prepare()
{
VulkanExampleBase::prepare();
setupVertexDescriptions();
prepareUniformBuffers();
loadScene();
preparePipelines();
setupDescriptorPool();
buildCommandBuffers();
prepared = true;
}
@ -885,20 +877,19 @@ public:
wireframe = !wireframe;
reBuildCommandBuffers();
break;
case 0x50:
scene->renderSingleScenePart = !scene->renderSingleScenePart;
reBuildCommandBuffers();
updateTextOverlay();
break;
case 0x6B:
if (scene->renderSingleScenePart)
{
scene->scenePartIndex++;
if (scene->scenePartIndex >= scene->meshes.size())
{
scene->scenePartIndex = 0;
scene->renderSingleScenePart = false;
}
}
else
{
scene->renderSingleScenePart = true;
}
scene->scenePartIndex = (scene->scenePartIndex < static_cast<uint32_t>(scene->meshes.size())) ? scene->scenePartIndex + 1 : 0;
reBuildCommandBuffers();
updateTextOverlay();
break;
case 0x6D:
scene->scenePartIndex = (scene->scenePartIndex > 0) ? scene->scenePartIndex - 1 : static_cast<uint32_t>(scene->meshes.size()) - 1;
updateTextOverlay();
reBuildCommandBuffers();
break;
case 0x4C:
@ -917,11 +908,11 @@ public:
#endif
if ((scene) && (scene->renderSingleScenePart))
{
textOverlay->addText("Rendering mesh " + std::to_string(scene->scenePartIndex) + " of " + std::to_string(static_cast<uint32_t>(scene->meshes.size())), 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Rendering mesh " + std::to_string(scene->scenePartIndex + 1) + " of " + std::to_string(static_cast<uint32_t>(scene->meshes.size())) + "(\"p\" to toggle)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
}
else
{
textOverlay->addText("Rendering whole scene", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Rendering whole scene (\"p\" to toggle)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
}
}
};