Merge pull request #991 from natevm/master

Example demonstrating how to use SBT record data in a ray tracing pipeline
This commit is contained in:
Sascha Willems 2022-09-27 07:03:12 +02:00 committed by GitHub
commit 61cc2e3d18
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 1139 additions and 0 deletions

View file

@ -0,0 +1,19 @@
#version 460
#extension GL_EXT_ray_tracing : enable
#extension GL_EXT_nonuniform_qualifier : enable
layout(location = 0) rayPayloadInEXT vec3 hitValue;
hitAttributeEXT vec2 attribs;
layout(shaderRecordEXT, std430) buffer SBT {
float r;
float g;
float b;
};
void main()
{
// Update the hit value to the hit record SBT data associated with this
// geometry ID and ray ID
hitValue = vec3(r, g, b);
}

View file

@ -0,0 +1,17 @@
#version 460
#extension GL_EXT_ray_tracing : enable
layout(location = 0) rayPayloadInEXT vec3 hitValue;
layout(shaderRecordEXT, std430) buffer SBT {
float r;
float g;
float b;
};
void main()
{
// Update the hit value to the hit record SBT data associated with this
// miss record
hitValue = vec3(r, g, b);
}

Binary file not shown.

View file

@ -0,0 +1,52 @@
#version 460
#extension GL_EXT_ray_tracing : enable
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 0, rgba8) uniform image2D image;
layout(binding = 2, set = 0) uniform CameraProperties
{
mat4 viewInverse;
mat4 projInverse;
} cam;
layout(location = 0) rayPayloadEXT vec3 hitValue;
layout(shaderRecordEXT, std430) buffer SBT {
float r;
float g;
float b;
};
void main()
{
const vec2 pixelCenter = vec2(gl_LaunchIDEXT.xy) + vec2(0.5);
const vec2 inUV = pixelCenter/vec2(gl_LaunchSizeEXT.xy);
vec2 d = inUV * 2.0 - 1.0;
vec4 origin = cam.viewInverse * vec4(0,0,0,1);
vec4 target = cam.projInverse * vec4(d.x, d.y, 1, 1) ;
vec4 direction = cam.viewInverse*vec4(normalize(target.xyz), 0) ;
float tmin = 0.001;
float tmax = 10000.0;
// use border to demonstrate raygen record data
if (all(greaterThan(gl_LaunchIDEXT.xy, ivec2(16, 16))) && all(lessThan(gl_LaunchIDEXT.xy, gl_LaunchSizeEXT.xy - ivec2(16, 16))))
{
// Generate a checker board pattern to trace out rays or use hit record data
ivec2 pos = ivec2(gl_LaunchIDEXT / 16);
if (((pos.x + pos.y % 2) % 2) == 0) {
// This will set hit value to either hit or miss SBT record color
traceRayEXT(topLevelAS, gl_RayFlagsOpaqueEXT, 0xff, 0, 0, 0, origin.xyz, tmin, direction.xyz, tmax, 0);
}
else {
// Set the hit value to the raygen SBT data
hitValue = vec3(r, g, b);
}
}
else {
// Set hit value to black
hitValue = vec3(0.0, 0.0, 0.0);
}
imageStore(image, ivec2(gl_LaunchIDEXT.xy), vec4(hitValue, 0.0));
}

Binary file not shown.

View file

@ -0,0 +1,27 @@
// Copyright 2020 Google LLC
struct Attribute
{
float2 attribs;
};
struct Payload
{
[[vk::location(0)]] float3 hitValue;
};
struct SBT {
float r;
float g;
float b;
};
[[vk::shader_record_ext]]
ConstantBuffer<SBT> sbt;
[shader("closesthit")]
void main(inout Payload p, in float2 attribs)
{
// Update the hit value to the hit record SBT data associated with this
// geometry ID and ray ID
p.hitValue = float3(sbt.r, sbt.g, sbt.g);
}

View file

@ -0,0 +1,22 @@
// Copyright 2020 Google LLC
struct Payload
{
[[vk::location(0)]] float3 hitValue;
};
struct SBT {
float r;
float g;
float b;
};
[[vk::shader_record_ext]]
ConstantBuffer<SBT> sbt;
[shader("miss")]
void main(inout Payload p)
{
// Update the hit value to the hit record SBT data associated with this
// miss record
p.hitValue = float3(sbt.r, sbt.g, sbt.g);
}

Binary file not shown.

View file

@ -0,0 +1,65 @@
// Copyright 2020 Google LLC
RaytracingAccelerationStructure rs : register(t0);
RWTexture2D<float4> image : register(u1);
struct CameraProperties
{
float4x4 viewInverse;
float4x4 projInverse;
};
cbuffer cam : register(b2) { CameraProperties cam; };
struct Payload
{
[[vk::location(0)]] float3 hitValue;
};
struct SBT {
float r;
float g;
float b;
};
[[vk::shader_record_ext]]
ConstantBuffer<SBT> sbt;
[shader("raygeneration")]
void main()
{
uint3 LaunchID = DispatchRaysIndex();
uint3 LaunchSize = DispatchRaysDimensions();
const float2 pixelCenter = float2(LaunchID.xy) + float2(0.5, 0.5);
const float2 inUV = pixelCenter/float2(LaunchSize.xy);
float2 d = inUV * 2.0 - 1.0;
float4 target = mul(cam.projInverse, float4(d.x, d.y, 1, 1));
RayDesc rayDesc;
rayDesc.Origin = mul(cam.viewInverse, float4(0,0,0,1)).xyz;
rayDesc.Direction = mul(cam.viewInverse, float4(normalize(target.xyz), 0)).xyz;
rayDesc.TMin = 0.001;
rayDesc.TMax = 10000.0;
Payload payload;
// use border to demonstrate raygen record data
if (all(LaunchID.xy > int2(16, 16)) && all(LaunchID.xy < LaunchSize.xy - int2(16, 16)))
{
// Generate a checker board pattern to trace out rays or use hit record data
int2 pos = int2(LaunchID.xy / 16);
if (((pos.x + pos.y % 2) % 2) == 0) {
// This will set hit value to either hit or miss SBT record color
TraceRay(rs, RAY_FLAG_FORCE_OPAQUE, 0xff, 0, 0, 0, rayDesc, payload);
}
else {
// Set the hit value to the raygen SBT data
payload.hitValue = float3(sbt.r, sbt.g, sbt.b);
}
}
else {
// Set hit value to black
payload.hitValue = float3(0.0, 0.0, 0.0);
}
image[int2(LaunchID.xy)] = float4(payload.hitValue, 0.0);
}

Binary file not shown.

View file

@ -131,6 +131,7 @@ set(EXAMPLES
raytracingbasic
raytracingcallable
raytracingreflections
raytracingsbtdata
raytracingshadows
renderheadless
screenshot

View file

@ -0,0 +1,936 @@
/*
* Vulkan Example - Hardware accelerated ray tracing example using SBT data
*
* Uses the data section of each shader binding table record to color the background and geometry
*
* Example by Nate Morrical (https://github.com/natevm)
*
* Copyright (C) 2019-2020 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
// Holds data for a ray tracing scratch buffer that is used as a temporary storage
struct RayTracingScratchBuffer
{
uint64_t deviceAddress = 0;
VkBuffer handle = VK_NULL_HANDLE;
VkDeviceMemory memory = VK_NULL_HANDLE;
};
// Ray tracing acceleration structure
struct AccelerationStructure {
VkAccelerationStructureKHR handle;
uint64_t deviceAddress = 0;
VkDeviceMemory memory;
VkBuffer buffer;
};
class VulkanExample : public VulkanExampleBase
{
public:
PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR;
PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR;
PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR;
PFN_vkGetAccelerationStructureBuildSizesKHR vkGetAccelerationStructureBuildSizesKHR;
PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR;
PFN_vkCmdBuildAccelerationStructuresKHR vkCmdBuildAccelerationStructuresKHR;
PFN_vkBuildAccelerationStructuresKHR vkBuildAccelerationStructuresKHR;
PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR;
PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR;
PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR;
VkPhysicalDeviceRayTracingPipelinePropertiesKHR rayTracingPipelineProperties{};
VkPhysicalDeviceAccelerationStructureFeaturesKHR accelerationStructureFeatures{};
VkPhysicalDeviceBufferDeviceAddressFeatures enabledBufferDeviceAddresFeatures{};
VkPhysicalDeviceRayTracingPipelineFeaturesKHR enabledRayTracingPipelineFeatures{};
VkPhysicalDeviceAccelerationStructureFeaturesKHR enabledAccelerationStructureFeatures{};
AccelerationStructure bottomLevelAS{};
AccelerationStructure topLevelAS{};
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer transformBuffer;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
vks::Buffer raygenShaderBindingTable;
vks::Buffer missShaderBindingTable;
vks::Buffer hitShaderBindingTable;
struct StorageImage {
VkDeviceMemory memory;
VkImage image;
VkImageView view;
VkFormat format;
} storageImage;
struct UniformData {
glm::mat4 viewInverse;
glm::mat4 projInverse;
} uniformData;
vks::Buffer ubo;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase()
{
title = "Ray tracing SBT data";
settings.overlay = false;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -2.5f));
// Require Vulkan 1.1
apiVersion = VK_API_VERSION_1_1;
// Ray tracing related extensions required by this sample
enabledDeviceExtensions.push_back(VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME);
// Required by VK_KHR_acceleration_structure
enabledDeviceExtensions.push_back(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
// Required for VK_KHR_ray_tracing_pipeline
enabledDeviceExtensions.push_back(VK_KHR_SPIRV_1_4_EXTENSION_NAME);
// Required by VK_KHR_spirv_1_4
enabledDeviceExtensions.push_back(VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME);
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyImageView(device, storageImage.view, nullptr);
vkDestroyImage(device, storageImage.image, nullptr);
vkFreeMemory(device, storageImage.memory, nullptr);
vkFreeMemory(device, bottomLevelAS.memory, nullptr);
vkDestroyBuffer(device, bottomLevelAS.buffer, nullptr);
vkDestroyAccelerationStructureKHR(device, bottomLevelAS.handle, nullptr);
vkFreeMemory(device, topLevelAS.memory, nullptr);
vkDestroyBuffer(device, topLevelAS.buffer, nullptr);
vkDestroyAccelerationStructureKHR(device, topLevelAS.handle, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
transformBuffer.destroy();
raygenShaderBindingTable.destroy();
missShaderBindingTable.destroy();
hitShaderBindingTable.destroy();
ubo.destroy();
}
/*
Create a scratch buffer to hold temporary data for a ray tracing acceleration structure
*/
RayTracingScratchBuffer createScratchBuffer(VkDeviceSize size)
{
RayTracingScratchBuffer scratchBuffer{};
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = size;
bufferCreateInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &scratchBuffer.handle));
VkMemoryRequirements memoryRequirements{};
vkGetBufferMemoryRequirements(device, scratchBuffer.handle, &memoryRequirements);
VkMemoryAllocateFlagsInfo memoryAllocateFlagsInfo{};
memoryAllocateFlagsInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO;
memoryAllocateFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
VkMemoryAllocateInfo memoryAllocateInfo = {};
memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memoryAllocateInfo.pNext = &memoryAllocateFlagsInfo;
memoryAllocateInfo.allocationSize = memoryRequirements.size;
memoryAllocateInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocateInfo, nullptr, &scratchBuffer.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, scratchBuffer.handle, scratchBuffer.memory, 0));
VkBufferDeviceAddressInfoKHR bufferDeviceAddressInfo{};
bufferDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO;
bufferDeviceAddressInfo.buffer = scratchBuffer.handle;
scratchBuffer.deviceAddress = vkGetBufferDeviceAddressKHR(device, &bufferDeviceAddressInfo);
return scratchBuffer;
}
void deleteScratchBuffer(RayTracingScratchBuffer& scratchBuffer)
{
if (scratchBuffer.memory != VK_NULL_HANDLE) {
vkFreeMemory(device, scratchBuffer.memory, nullptr);
}
if (scratchBuffer.handle != VK_NULL_HANDLE) {
vkDestroyBuffer(device, scratchBuffer.handle, nullptr);
}
}
void createAccelerationStructureBuffer(AccelerationStructure &accelerationStructure, VkAccelerationStructureBuildSizesInfoKHR buildSizeInfo)
{
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = buildSizeInfo.accelerationStructureSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &accelerationStructure.buffer));
VkMemoryRequirements memoryRequirements{};
vkGetBufferMemoryRequirements(device, accelerationStructure.buffer, &memoryRequirements);
VkMemoryAllocateFlagsInfo memoryAllocateFlagsInfo{};
memoryAllocateFlagsInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO;
memoryAllocateFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
VkMemoryAllocateInfo memoryAllocateInfo{};
memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memoryAllocateInfo.pNext = &memoryAllocateFlagsInfo;
memoryAllocateInfo.allocationSize = memoryRequirements.size;
memoryAllocateInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocateInfo, nullptr, &accelerationStructure.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, accelerationStructure.buffer, accelerationStructure.memory, 0));
}
/*
Gets the device address from a buffer that's required for some of the buffers used for ray tracing
*/
uint64_t getBufferDeviceAddress(VkBuffer buffer)
{
VkBufferDeviceAddressInfoKHR bufferDeviceAI{};
bufferDeviceAI.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO;
bufferDeviceAI.buffer = buffer;
return vkGetBufferDeviceAddressKHR(device, &bufferDeviceAI);
}
/*
Set up a storage image that the ray generation shader will be writing to
*/
void createStorageImage()
{
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = swapChain.colorFormat;
image.extent.width = width;
image.extent.height = height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &storageImage.image));
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, storageImage.image, &memReqs);
VkMemoryAllocateInfo memoryAllocateInfo = vks::initializers::memoryAllocateInfo();
memoryAllocateInfo.allocationSize = memReqs.size;
memoryAllocateInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocateInfo, nullptr, &storageImage.memory));
VK_CHECK_RESULT(vkBindImageMemory(device, storageImage.image, storageImage.memory, 0));
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = swapChain.colorFormat;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = storageImage.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &storageImage.view));
VkCommandBuffer cmdBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(cmdBuffer, storageImage.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_GENERAL,
{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vulkanDevice->flushCommandBuffer(cmdBuffer, queue);
}
/*
Create the bottom level acceleration structure contains the scene's actual geometry (vertices, triangles)
*/
void createBottomLevelAccelerationStructure()
{
// Setup vertices for a single triangle
struct Vertex {
float pos[3];
};
std::vector<Vertex> vertices = {
{ { 1.0f, 1.0f, 0.0f } },
{ { -1.0f, 1.0f, 0.0f } },
{ { 0.0f, -1.0f, 0.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0, 1, 2 };
indexCount = static_cast<uint32_t>(indices.size());
// Setup identity transform matrix
VkTransformMatrixKHR transformMatrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f
};
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the GPU memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
// Transform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&transformBuffer,
sizeof(VkTransformMatrixKHR),
&transformMatrix));
VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{};
VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{};
VkDeviceOrHostAddressConstKHR transformBufferDeviceAddress{};
vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(vertexBuffer.buffer);
indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(indexBuffer.buffer);
transformBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(transformBuffer.buffer);
// Build
VkAccelerationStructureGeometryKHR accelerationStructureGeometry{};
accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
accelerationStructureGeometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR;
accelerationStructureGeometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
accelerationStructureGeometry.geometry.triangles.vertexData = vertexBufferDeviceAddress;
accelerationStructureGeometry.geometry.triangles.maxVertex = 3;
accelerationStructureGeometry.geometry.triangles.vertexStride = sizeof(Vertex);
accelerationStructureGeometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
accelerationStructureGeometry.geometry.triangles.indexData = indexBufferDeviceAddress;
accelerationStructureGeometry.geometry.triangles.transformData.deviceAddress = 0;
accelerationStructureGeometry.geometry.triangles.transformData.hostAddress = nullptr;
accelerationStructureGeometry.geometry.triangles.transformData = transformBufferDeviceAddress;
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo{};
accelerationStructureBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
const uint32_t numTriangles = 1;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo{};
accelerationStructureBuildSizesInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR;
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&numTriangles,
&accelerationStructureBuildSizesInfo);
createAccelerationStructureBuffer(bottomLevelAS, accelerationStructureBuildSizesInfo);
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo{};
accelerationStructureCreateInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
accelerationStructureCreateInfo.buffer = bottomLevelAS.buffer;
accelerationStructureCreateInfo.size = accelerationStructureBuildSizesInfo.accelerationStructureSize;
accelerationStructureCreateInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
vkCreateAccelerationStructureKHR(device, &accelerationStructureCreateInfo, nullptr, &bottomLevelAS.handle);
// Create a small scratch buffer used during build of the bottom level acceleration structure
RayTracingScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{};
accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = numTriangles;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
accelerationDeviceAddressInfo.accelerationStructure = bottomLevelAS.handle;
bottomLevelAS.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
deleteScratchBuffer(scratchBuffer);
}
/*
The top level acceleration structure contains the scene's object instances
*/
void createTopLevelAccelerationStructure()
{
VkTransformMatrixKHR transformMatrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f };
VkAccelerationStructureInstanceKHR instance{};
instance.transform = transformMatrix;
instance.instanceCustomIndex = 0;
instance.mask = 0xFF;
instance.instanceShaderBindingTableRecordOffset = 0;
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
// Buffer for instance data
vks::Buffer instancesBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&instancesBuffer,
sizeof(VkAccelerationStructureInstanceKHR),
&instance));
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
VkAccelerationStructureGeometryKHR accelerationStructureGeometry{};
accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
// Get size info
/*
The pSrcAccelerationStructure, dstAccelerationStructure, and mode members of pBuildInfo are ignored. Any VkDeviceOrHostAddressKHR members of pBuildInfo are ignored by this command, except that the hostAddress member of VkAccelerationStructureGeometryTrianglesDataKHR::transformData will be examined to check if it is NULL.*
*/
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo{};
accelerationStructureBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
uint32_t primitive_count = 1;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo{};
accelerationStructureBuildSizesInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR;
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&primitive_count,
&accelerationStructureBuildSizesInfo);
createAccelerationStructureBuffer(topLevelAS, accelerationStructureBuildSizesInfo);
VkAccelerationStructureCreateInfoKHR accelerationStructureCreateInfo{};
accelerationStructureCreateInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
accelerationStructureCreateInfo.buffer = topLevelAS.buffer;
accelerationStructureCreateInfo.size = accelerationStructureBuildSizesInfo.accelerationStructureSize;
accelerationStructureCreateInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
vkCreateAccelerationStructureKHR(device, &accelerationStructureCreateInfo, nullptr, &topLevelAS.handle);
// Create a small scratch buffer used during build of the top level acceleration structure
RayTracingScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{};
accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = 1;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
accelerationDeviceAddressInfo.accelerationStructure = topLevelAS.handle;
topLevelAS.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
deleteScratchBuffer(scratchBuffer);
instancesBuffer.destroy();
}
/*
Create the Shader Binding Tables that binds the programs and top-level acceleration structure
In this example, we embed data in each record that can be read by the device during ray tracing
SBT Layout used in this sample:
/----------------\
| raygen handle |
| - - - - - - - |
| raygen data |
|----------------|
| miss handle |
| - - - - - - - |
| miss data |
|----------------|
| hit handle |
| - - - - - - - |
| hit data |
\----------------/
*/
void createShaderBindingTable() {
const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize;
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
const uint32_t sbtSize = groupCount * handleSizeAligned;
std::vector<uint8_t> shaderHandleStorage(sbtSize);
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
const VkBufferUsageFlags bufferUsageFlags = VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
const VkMemoryPropertyFlags memoryUsageFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
// We allocate space for the handle (which is like lambda function pointers to call in the ray tracing pipeline)
// as well as the data to pass to those functions (which act as the variables being "captured" by those lambda functions)
VK_CHECK_RESULT(vulkanDevice->createBuffer(bufferUsageFlags, memoryUsageFlags, &raygenShaderBindingTable, handleSize + sizeof(float) * 3));
VK_CHECK_RESULT(vulkanDevice->createBuffer(bufferUsageFlags, memoryUsageFlags, &missShaderBindingTable, handleSize + sizeof(float) * 3));
VK_CHECK_RESULT(vulkanDevice->createBuffer(bufferUsageFlags, memoryUsageFlags, &hitShaderBindingTable, handleSize + sizeof(float) * 3));
// Copy handles
raygenShaderBindingTable.map();
missShaderBindingTable.map();
hitShaderBindingTable.map();
memcpy(raygenShaderBindingTable.mapped, shaderHandleStorage.data(), handleSize);
memcpy(missShaderBindingTable.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize);
memcpy(hitShaderBindingTable.mapped, shaderHandleStorage.data() + handleSizeAligned * 2, handleSize);
// Copy over raygen record data
glm::vec3 color1(0.5f, 0.5f, 0.5f);
memcpy(((uint8_t*)(raygenShaderBindingTable.mapped)) + handleSize, &color1, sizeof(glm::vec3));
// Copy over miss record data
glm::vec3 color2(1.f, 1.f, 1.f);
memcpy(((uint8_t*)(missShaderBindingTable.mapped)) + handleSize, &color2, sizeof(glm::vec3));
// Copy over hit group record data
glm::vec3 color3(1.f, 0.f, 0.f);
memcpy(((uint8_t*)(hitShaderBindingTable.mapped)) + handleSize, &color3, sizeof(glm::vec3));
}
/*
Create the descriptor sets used for the ray tracing dispatch
*/
void createDescriptorSets()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 }
};
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo{};
descriptorAccelerationStructureInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR;
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
VkWriteDescriptorSet accelerationStructureWrite{};
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
// The specialized acceleration structure descriptor has to be chained
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
accelerationStructureWrite.dstSet = descriptorSet;
accelerationStructureWrite.dstBinding = 0;
accelerationStructureWrite.descriptorCount = 1;
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
VkDescriptorImageInfo storageImageDescriptor{};
storageImageDescriptor.imageView = storageImage.view;
storageImageDescriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
VkWriteDescriptorSet uniformBufferWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
accelerationStructureWrite,
resultImageWrite,
uniformBufferWrite
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
}
/*
Create our ray tracing pipeline
*/
void createRayTracingPipeline()
{
VkDescriptorSetLayoutBinding accelerationStructureLayoutBinding{};
accelerationStructureLayoutBinding.binding = 0;
accelerationStructureLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
accelerationStructureLayoutBinding.descriptorCount = 1;
accelerationStructureLayoutBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
VkDescriptorSetLayoutBinding resultImageLayoutBinding{};
resultImageLayoutBinding.binding = 1;
resultImageLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
resultImageLayoutBinding.descriptorCount = 1;
resultImageLayoutBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
VkDescriptorSetLayoutBinding uniformBufferBinding{};
uniformBufferBinding.binding = 2;
uniformBufferBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
uniformBufferBinding.descriptorCount = 1;
uniformBufferBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
std::vector<VkDescriptorSetLayoutBinding> bindings({
accelerationStructureLayoutBinding,
resultImageLayoutBinding,
uniformBufferBinding
});
VkDescriptorSetLayoutCreateInfo descriptorSetlayoutCI{};
descriptorSetlayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorSetlayoutCI.bindingCount = static_cast<uint32_t>(bindings.size());
descriptorSetlayoutCI.pBindings = bindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetlayoutCI, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
/*
Setup ray tracing shader groups
*/
std::vector<VkPipelineShaderStageCreateInfo> shaderStages;
// Ray generation group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingsbtdata/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
// Miss group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingsbtdata/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
// Closest hit group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingsbtdata/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
shaderGroup.generalShader = VK_SHADER_UNUSED_KHR;
shaderGroup.closestHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
/*
Create the ray tracing pipeline
*/
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI{};
rayTracingPipelineCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR;
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
rayTracingPipelineCI.pStages = shaderStages.data();
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
rayTracingPipelineCI.pGroups = shaderGroups.data();
rayTracingPipelineCI.maxPipelineRayRecursionDepth = 1;
rayTracingPipelineCI.layout = pipelineLayout;
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
}
/*
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
*/
void createUniformBuffer()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&ubo,
sizeof(uniformData),
&uniformData));
VK_CHECK_RESULT(ubo.map());
updateUniformBuffers();
}
/*
If the window has been resized, we need to recreate the storage image and it's descriptor
*/
void handleResize()
{
// Delete allocated resources
vkDestroyImageView(device, storageImage.view, nullptr);
vkDestroyImage(device, storageImage.image, nullptr);
vkFreeMemory(device, storageImage.memory, nullptr);
// Recreate image
createStorageImage();
// Update descriptor
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
}
/*
Command buffer generation
*/
void buildCommandBuffers()
{
if (resized)
{
handleResize();
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Setup the buffer regions pointing to the shaders in our shader binding table
*/
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
// Note, we add 3 * sizeof(float) to each SBT entry size to account for the data sections of these records
// that we use to store our color data
VkStridedDeviceAddressRegionKHR raygenShaderSbtEntry{};
raygenShaderSbtEntry.deviceAddress = getBufferDeviceAddress(raygenShaderBindingTable.buffer);
raygenShaderSbtEntry.stride = handleSizeAligned;
raygenShaderSbtEntry.size = vks::tools::alignedSize(handleSizeAligned + 3 * sizeof(float), rayTracingPipelineProperties.shaderGroupBaseAlignment);
VkStridedDeviceAddressRegionKHR missShaderSbtEntry{};
missShaderSbtEntry.deviceAddress = getBufferDeviceAddress(missShaderBindingTable.buffer);
missShaderSbtEntry.stride = handleSizeAligned;
missShaderSbtEntry.size = vks::tools::alignedSize(handleSizeAligned + 3 * sizeof(float), rayTracingPipelineProperties.shaderGroupBaseAlignment);
VkStridedDeviceAddressRegionKHR hitShaderSbtEntry{};
hitShaderSbtEntry.deviceAddress = getBufferDeviceAddress(hitShaderBindingTable.buffer);
hitShaderSbtEntry.stride = handleSizeAligned;
hitShaderSbtEntry.size = vks::tools::alignedSize(handleSizeAligned + 3 * sizeof(float), rayTracingPipelineProperties.shaderGroupBaseAlignment);
VkStridedDeviceAddressRegionKHR callableShaderSbtEntry{};
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
vkCmdTraceRaysKHR(
drawCmdBuffers[i],
&raygenShaderSbtEntry,
&missShaderSbtEntry,
&hitShaderSbtEntry,
&callableShaderSbtEntry,
width,
height,
1);
/*
Copy ray tracing output to swap chain image
*/
// Prepare current swap chain image as transfer destination
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Prepare ray tracing output image as transfer source
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
subresourceRange);
VkImageCopy copyRegion{};
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent = { width, height, 1 };
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copyRegion);
// Transition swap chain image back for presentation
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
subresourceRange);
// Transition ray tracing output image back to general layout
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_GENERAL,
subresourceRange);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void updateUniformBuffers()
{
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
uniformData.viewInverse = glm::inverse(camera.matrices.view);
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
}
void getEnabledFeatures()
{
// Enable features required for ray tracing using feature chaining via pNext
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
deviceCreatepNextChain = &enabledAccelerationStructureFeatures;
}
void prepare()
{
VulkanExampleBase::prepare();
// Get ray tracing pipeline properties, which will be used later on in the sample
rayTracingPipelineProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR;
VkPhysicalDeviceProperties2 deviceProperties2{};
deviceProperties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
deviceProperties2.pNext = &rayTracingPipelineProperties;
vkGetPhysicalDeviceProperties2(physicalDevice, &deviceProperties2);
// Get acceleration structure properties, which will be used later on in the sample
accelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
VkPhysicalDeviceFeatures2 deviceFeatures2{};
deviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
deviceFeatures2.pNext = &accelerationStructureFeatures;
vkGetPhysicalDeviceFeatures2(physicalDevice, &deviceFeatures2);
// Get the ray tracing and accelertion structure related function pointers required by this sample
vkGetBufferDeviceAddressKHR = reinterpret_cast<PFN_vkGetBufferDeviceAddressKHR>(vkGetDeviceProcAddr(device, "vkGetBufferDeviceAddressKHR"));
vkCmdBuildAccelerationStructuresKHR = reinterpret_cast<PFN_vkCmdBuildAccelerationStructuresKHR>(vkGetDeviceProcAddr(device, "vkCmdBuildAccelerationStructuresKHR"));
vkBuildAccelerationStructuresKHR = reinterpret_cast<PFN_vkBuildAccelerationStructuresKHR>(vkGetDeviceProcAddr(device, "vkBuildAccelerationStructuresKHR"));
vkCreateAccelerationStructureKHR = reinterpret_cast<PFN_vkCreateAccelerationStructureKHR>(vkGetDeviceProcAddr(device, "vkCreateAccelerationStructureKHR"));
vkDestroyAccelerationStructureKHR = reinterpret_cast<PFN_vkDestroyAccelerationStructureKHR>(vkGetDeviceProcAddr(device, "vkDestroyAccelerationStructureKHR"));
vkGetAccelerationStructureBuildSizesKHR = reinterpret_cast<PFN_vkGetAccelerationStructureBuildSizesKHR>(vkGetDeviceProcAddr(device, "vkGetAccelerationStructureBuildSizesKHR"));
vkGetAccelerationStructureDeviceAddressKHR = reinterpret_cast<PFN_vkGetAccelerationStructureDeviceAddressKHR>(vkGetDeviceProcAddr(device, "vkGetAccelerationStructureDeviceAddressKHR"));
vkCmdTraceRaysKHR = reinterpret_cast<PFN_vkCmdTraceRaysKHR>(vkGetDeviceProcAddr(device, "vkCmdTraceRaysKHR"));
vkGetRayTracingShaderGroupHandlesKHR = reinterpret_cast<PFN_vkGetRayTracingShaderGroupHandlesKHR>(vkGetDeviceProcAddr(device, "vkGetRayTracingShaderGroupHandlesKHR"));
vkCreateRayTracingPipelinesKHR = reinterpret_cast<PFN_vkCreateRayTracingPipelinesKHR>(vkGetDeviceProcAddr(device, "vkCreateRayTracingPipelinesKHR"));
// Create the acceleration structures used to render the ray traced scene
createBottomLevelAccelerationStructure();
createTopLevelAccelerationStructure();
createStorageImage();
createUniformBuffer();
createRayTracingPipeline();
createShaderBindingTable();
createDescriptorSets();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated)
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()