Skinned mesh stuff moved to class, added resources

This commit is contained in:
saschawillems 2016-05-14 21:19:52 +02:00
parent 26b02736d5
commit 7087d7d14e
19 changed files with 2637 additions and 14775 deletions

View file

@ -45,6 +45,288 @@ std::vector<vkMeshLoader::VertexLayout> vertexLayout =
vkMeshLoader::VERTEX_LAYOUT_DUMMY_VEC4
};
// Maximum number of bones per mesh
// Must not be higher than same const in skinning shader
#define MAX_BONES 64
// Maximum number of bones per vertex
#define MAX_BONES_PER_VERTEX 4
// Skinned mesh class
// Per-vertex bone IDs and weights
struct VertexBoneData
{
std::array<uint32_t, MAX_BONES_PER_VERTEX> IDs;
std::array<float, MAX_BONES_PER_VERTEX> weights;
// Ad bone weighting to vertex info
void add(uint32_t boneID, float weight)
{
for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++)
{
if (weights[i] == 0.0f)
{
IDs[i] = boneID;
weights[i] = weight;
return;
}
}
}
};
// Stores information on a single bone
struct BoneInfo
{
aiMatrix4x4 offset;
aiMatrix4x4 finalTransformation;
BoneInfo()
{
offset = aiMatrix4x4();
finalTransformation = aiMatrix4x4();
};
};
class SkinnedMesh
{
public:
// Bone related stuff
// Maps bone name with index
std::map<std::string, uint32_t> boneMapping;
// Bone details
std::vector<BoneInfo> boneInfo;
// Number of bones present
uint32_t numBones = 0;
// Root inverese transform matrix
aiMatrix4x4 globalInverseTransform;
// Per-vertex bone info
std::vector<VertexBoneData> bones;
// Bone transformations
std::vector<aiMatrix4x4> boneTransforms;
float animationSpeed = 0.75f;
// Vulkan buffers
vkMeshLoader::MeshBuffer meshBuffer;
// Reference to assimp mesh
// Required for animation
VulkanMeshLoader *meshLoader;
// Load bone information from ASSIMP mesh
void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector<VertexBoneData>& Bones)
{
for (uint32_t i = 0; i < pMesh->mNumBones; i++)
{
uint32_t index = 0;
assert(pMesh->mNumBones <= MAX_BONES);
std::string name(pMesh->mBones[i]->mName.data);
if (boneMapping.find(name) == boneMapping.end())
{
// Bone not present, add new one
index = numBones;
numBones++;
BoneInfo bone;
boneInfo.push_back(bone);
boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix;
boneMapping[name] = index;
}
else
{
index = boneMapping[name];
}
for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++)
{
uint32_t vertexID = meshLoader->m_Entries[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId;
Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight);
}
}
boneTransforms.resize(numBones);
}
// Recursive bone transformation for given animation time
void update(float time)
{
float TicksPerSecond = (float)(meshLoader->pScene->mAnimations[0]->mTicksPerSecond != 0 ? meshLoader->pScene->mAnimations[0]->mTicksPerSecond : 25.0f);
float TimeInTicks = time * TicksPerSecond;
float AnimationTime = fmod(TimeInTicks, (float)meshLoader->pScene->mAnimations[0]->mDuration);
aiMatrix4x4 identity = aiMatrix4x4();
readNodeHierarchy(AnimationTime, meshLoader->pScene->mRootNode, identity);
for (uint32_t i = 0; i < boneTransforms.size(); i++)
{
boneTransforms[i] = boneInfo[i].finalTransformation;
}
}
private:
// Find animation for a given node
const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName)
{
for (uint32_t i = 0; i < animation->mNumChannels; i++)
{
const aiNodeAnim* nodeAnim = animation->mChannels[i];
if (std::string(nodeAnim->mNodeName.data) == nodeName)
{
return nodeAnim;
}
}
return nullptr;
}
// Returns a 4x4 matrix with interpolated translation between current and next frame
aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D translation;
if (pNodeAnim->mNumPositionKeys == 1)
{
translation = pNodeAnim->mPositionKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++)
{
if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
translation = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Translation(translation, mat);
return mat;
}
// Returns a 4x4 matrix with interpolated rotation between current and next frame
aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim)
{
aiQuaternion rotation;
if (pNodeAnim->mNumRotationKeys == 1)
{
rotation = pNodeAnim->mRotationKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++)
{
if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex];
aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiQuaternion& start = currentFrame.mValue;
const aiQuaternion& end = nextFrame.mValue;
aiQuaternion::Interpolate(rotation, start, end, delta);
rotation.Normalize();
}
aiMatrix4x4 mat(rotation.GetMatrix());
return mat;
}
// Returns a 4x4 matrix with interpolated scaling between current and next frame
aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D scale;
if (pNodeAnim->mNumScalingKeys == 1)
{
scale = pNodeAnim->mScalingKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++)
{
if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
scale = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Scaling(scale, mat);
return mat;
}
// Get node hierarchy for current animation time
void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform)
{
std::string NodeName(pNode->mName.data);
const aiAnimation* pAnimation = meshLoader->pScene->mAnimations[0];
aiMatrix4x4 NodeTransformation(pNode->mTransformation);
const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName);
if (pNodeAnim)
{
// Get interpolated matrices between current and next frame
aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim);
aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim);
aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim);
NodeTransformation = matTranslation * matRotation * matScale;
}
aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation;
// todo : replace name lookup with hash or index
if (boneMapping.find(NodeName) != boneMapping.end())
{
uint32_t BoneIndex = boneMapping[NodeName];
boneInfo[BoneIndex].finalTransformation = globalInverseTransform * GlobalTransformation * boneInfo[BoneIndex].offset;
}
for (uint32_t i = 0; i < pNode->mNumChildren; i++)
{
readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation);
}
}
};
class VulkanExample : public VulkanExampleBase
{
public:
@ -59,73 +341,13 @@ public:
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
// Mesh related stuff
// Maximum number of bones per vertex
#define MAX_BONES_PER_VERTEX 4
// Per-vertex bone IDs and weights
struct VertexBoneData
{
std::array<uint32_t, MAX_BONES_PER_VERTEX> IDs;
std::array<float, MAX_BONES_PER_VERTEX> weights;
// Ad bone weighting to vertex info
void add(uint32_t boneID, float weight)
{
for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++)
{
if (weights[i] == 0.0f)
{
IDs[i] = boneID;
weights[i] = weight;
return;
}
}
}
};
// Stores information on a single bone
struct BoneInfo
{
aiMatrix4x4 offset;
aiMatrix4x4 finalTransformation;
BoneInfo()
{
offset = aiMatrix4x4();
finalTransformation = aiMatrix4x4();
};
};
struct Mesh {
// Bone related stuff
// Maps bone name with index
std::map<std::string, uint32_t> boneMapping;
// Bone details
std::vector<BoneInfo> boneInfo;
// Number of bones present
uint32_t numBones = 0;
// Root inverese transform matrix
aiMatrix4x4 globalInverseTransform;
// Per-vertex bone info
std::vector<VertexBoneData> bones;
// Vulkan buffers
vkMeshLoader::MeshBuffer meshBuffer;
// Reference to assimp mesh
// Required for animation
VulkanMeshLoader *meshLoader;
} mesh;
SkinnedMesh *skinnedMesh;
struct {
vkTools::UniformData vsScene;
vkTools::UniformData floor;
} uniformData;
// Must not be higher than same const in skinning shader
#define MAX_BONES 64
struct {
glm::mat4 projection;
glm::mat4 model;
@ -164,12 +386,11 @@ public:
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -166.0f;
zoom = -150.0f;
zoomSpeed = 2.5f;
rotationSpeed = 0.5f;
rotation = { -187.0f, 60.0f, 180.0f };
rotation = { -182.5f, -38.5f, 180.0f };
title = "Vulkan Example - Skeletal animation";
paused = true;
cameraPos = { 0.0f, 0.0f, 12.0f };
}
@ -182,14 +403,15 @@ public:
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Destroy and free mesh resources
vkMeshLoader::freeMeshBufferResources(device, &mesh.meshBuffer);
textureLoader->destroyTexture(textures.colorMap);
vkTools::destroyUniformData(device, &uniformData.vsScene);
delete(mesh.meshLoader);
// Destroy and free mesh resources
vkMeshLoader::freeMeshBufferResources(device, &skinnedMesh->meshBuffer);
delete(skinnedMesh->meshLoader);
delete(skinnedMesh);
}
void buildCommandBuffers()
@ -229,9 +451,9 @@ public:
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skinning);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &mesh.meshBuffer.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], mesh.meshBuffer.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], mesh.meshBuffer.indexCount, 1, 0, 0, 0);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &skinnedMesh->meshBuffer.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], skinnedMesh->meshBuffer.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], skinnedMesh->meshBuffer.indexCount, 1, 0, 0, 0);
// Floor
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.floor, 0, NULL);
@ -274,245 +496,30 @@ public:
assert(!err);
}
// Load bone information from ASSIMP mesh
void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector<VertexBoneData>& Bones)
{
for (uint32_t i = 0; i < pMesh->mNumBones; i++)
{
uint32_t index = 0;
assert(pMesh->mNumBones <= MAX_BONES);
std::string name(pMesh->mBones[i]->mName.data);
if (mesh.boneMapping.find(name) == mesh.boneMapping.end())
{
// Bone not present, add new one
index = mesh.numBones;
mesh.numBones++;
BoneInfo bone;
mesh.boneInfo.push_back(bone);
mesh.boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix;
mesh.boneMapping[name] = index;
}
else
{
index = mesh.boneMapping[name];
}
for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++)
{
uint32_t vertexID = mesh.meshLoader->m_Entries[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId;
Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight);
}
}
}
// Find animation for a given node
const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName)
{
for (uint32_t i = 0; i < animation->mNumChannels; i++)
{
const aiNodeAnim* nodeAnim = animation->mChannels[i];
if (std::string(nodeAnim->mNodeName.data) == nodeName)
{
return nodeAnim;
}
}
return nullptr;
}
// Returns a 4x4 matrix with interpolated translation between current and next frame
aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D translation;
if (pNodeAnim->mNumPositionKeys == 1)
{
translation = pNodeAnim->mPositionKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++)
{
if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
translation = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Translation(translation, mat);
return mat;
}
// Returns a 4x4 matrix with interpolated rotation between current and next frame
aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim)
{
aiQuaternion rotation;
if (pNodeAnim->mNumRotationKeys == 1)
{
rotation = pNodeAnim->mRotationKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++)
{
if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex];
aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiQuaternion& start = currentFrame.mValue;
const aiQuaternion& end = nextFrame.mValue;
aiQuaternion::Interpolate(rotation, start, end, delta);
rotation.Normalize();
}
aiMatrix4x4 mat(rotation.GetMatrix());
return mat;
}
// Returns a 4x4 matrix with interpolated scaling between current and next frame
aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D scale;
if (pNodeAnim->mNumScalingKeys == 1)
{
scale = pNodeAnim->mScalingKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++)
{
if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
scale = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Scaling(scale, mat);
return mat;
}
// Get node hierarchy for current animation time
void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform)
{
std::string NodeName(pNode->mName.data);
const aiAnimation* pAnimation = mesh.meshLoader->pScene->mAnimations[0];
aiMatrix4x4 NodeTransformation(pNode->mTransformation);
const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName);
if (pNodeAnim)
{
// Get interpolated matrices between current and next frame
aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim);
aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim);
aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim);
NodeTransformation = matTranslation * matRotation * matScale;
}
aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation;
// todo : replace name lookup with hash or index
if (mesh.boneMapping.find(NodeName) != mesh.boneMapping.end())
{
uint32_t BoneIndex = mesh.boneMapping[NodeName];
mesh.boneInfo[BoneIndex].finalTransformation = mesh.globalInverseTransform * GlobalTransformation * mesh.boneInfo[BoneIndex].offset;
}
for (uint32_t i = 0; i < pNode->mNumChildren; i++)
{
readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation);
}
}
// Recursive bone transformation
// Results are stored in the Transforms vector
void boneTransform(float time, std::vector<aiMatrix4x4>& boneTransforms)
{
float TicksPerSecond = (float)(mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond != 0 ? mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond : 25.0f);
float TimeInTicks = time * TicksPerSecond;
float AnimationTime = fmod(TimeInTicks, (float)mesh.meshLoader->pScene->mAnimations[0]->mDuration);
aiMatrix4x4 identity = aiMatrix4x4();
readNodeHierarchy(AnimationTime, mesh.meshLoader->pScene->mRootNode, identity);
boneTransforms.resize(mesh.numBones); // todo : resize only once
for (uint32_t i = 0; i < boneTransforms.size(); i++)
{
boneTransforms[i] = mesh.boneInfo[i].finalTransformation;
}
}
// Load a mesh based on data read via assimp
// The other example will use the VulkanMesh loader which has some additional functionality for loading meshes
void loadMesh()
{
mesh.meshLoader = new VulkanMeshLoader();
skinnedMesh = new SkinnedMesh();
skinnedMesh->meshLoader = new VulkanMeshLoader();
#if defined(__ANDROID__)
mesh.meshLoader->assetManager = androidApp->activity->assetManager;
skinnedMesh->meshLoader->assetManager = androidApp->activity->assetManager;
#endif
mesh.meshLoader->LoadMesh(getAssetPath() + "models/goblin_3ds.DAE", 0);
skinnedMesh->meshLoader->LoadMesh(getAssetPath() + "models/goblin.dae", 0);
// Setup bones
// One vertex bone info structure per vertex
mesh.bones.resize(mesh.meshLoader->numVertices);
skinnedMesh->bones.resize(skinnedMesh->meshLoader->numVertices);
// Store global inverse transform matrix of root node
mesh.globalInverseTransform = mesh.meshLoader->pScene->mRootNode->mTransformation;
mesh.globalInverseTransform.Inverse();
skinnedMesh->globalInverseTransform = skinnedMesh->meshLoader->pScene->mRootNode->mTransformation;
skinnedMesh->globalInverseTransform.Inverse();
// Load bones (weights and IDs)
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
aiMesh *paiMesh = mesh.meshLoader->pScene->mMeshes[m];
aiMesh *paiMesh = skinnedMesh->meshLoader->pScene->mMeshes[m];
if (paiMesh->mNumBones > 0)
{
loadBones(m, paiMesh, mesh.bones);
skinnedMesh->loadBones(m, paiMesh, skinnedMesh->bones);
}
}
@ -520,23 +527,23 @@ public:
std::vector<Vertex> vertexBuffer;
// Iterate through all meshes in the file
// and extract the vertex information used in this demo
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Vertices.size(); i++)
for (uint32_t i = 0; i < skinnedMesh->meshLoader->m_Entries[m].Vertices.size(); i++)
{
Vertex vertex;
vertex.pos = mesh.meshLoader->m_Entries[m].Vertices[i].m_pos;
vertex.pos = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_pos;
vertex.pos.y = -vertex.pos.y;
vertex.normal = mesh.meshLoader->m_Entries[m].Vertices[i].m_normal;
vertex.uv = mesh.meshLoader->m_Entries[m].Vertices[i].m_tex;
vertex.color = mesh.meshLoader->m_Entries[m].Vertices[i].m_color;
vertex.normal = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_normal;
vertex.uv = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_tex;
vertex.color = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_color;
// Fetch bone weights and IDs
for (uint32_t j = 0; j < MAX_BONES_PER_VERTEX; j++)
{
vertex.boneWeights[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].weights[j];
vertex.boneIDs[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].IDs[j];
vertex.boneWeights[j] = skinnedMesh->bones[skinnedMesh->meshLoader->m_Entries[m].vertexBase + i].weights[j];
vertex.boneIDs[j] = skinnedMesh->bones[skinnedMesh->meshLoader->m_Entries[m].vertexBase + i].IDs[j];
}
vertexBuffer.push_back(vertex);
@ -546,16 +553,16 @@ public:
// Generate index buffer from loaded mesh file
std::vector<uint32_t> indexBuffer;
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
uint32_t indexBase = indexBuffer.size();
for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Indices.size(); i++)
for (uint32_t i = 0; i < skinnedMesh->meshLoader->m_Entries[m].Indices.size(); i++)
{
indexBuffer.push_back(mesh.meshLoader->m_Entries[m].Indices[i] + indexBase);
indexBuffer.push_back(skinnedMesh->meshLoader->m_Entries[m].Indices[i] + indexBase);
}
}
uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
mesh.meshBuffer.indexCount = indexBuffer.size();
skinnedMesh->meshBuffer.indexCount = indexBuffer.size();
bool useStaging = true;
@ -591,16 +598,16 @@ public:
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
nullptr,
&mesh.meshBuffer.vertices.buf,
&mesh.meshBuffer.vertices.mem);
&skinnedMesh->meshBuffer.vertices.buf,
&skinnedMesh->meshBuffer.vertices.mem);
// Index buffer
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
nullptr,
&mesh.meshBuffer.indices.buf,
&mesh.meshBuffer.indices.mem);
&skinnedMesh->meshBuffer.indices.buf,
&skinnedMesh->meshBuffer.indices.mem);
// Copy from staging buffers
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
@ -611,7 +618,7 @@ public:
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
mesh.meshBuffer.vertices.buf,
skinnedMesh->meshBuffer.vertices.buf,
1,
&copyRegion);
@ -619,7 +626,7 @@ public:
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
mesh.meshBuffer.indices.buf,
skinnedMesh->meshBuffer.indices.buf,
1,
&copyRegion);
@ -638,28 +645,28 @@ public:
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
vertexBufferSize,
vertexBuffer.data(),
&mesh.meshBuffer.vertices.buf,
&mesh.meshBuffer.vertices.mem);
&skinnedMesh->meshBuffer.vertices.buf,
&skinnedMesh->meshBuffer.vertices.mem);
// Index buffer
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
indexBufferSize,
indexBuffer.data(),
&mesh.meshBuffer.indices.buf,
&mesh.meshBuffer.indices.mem);
&skinnedMesh->meshBuffer.indices.buf,
&skinnedMesh->meshBuffer.indices.mem);
}
}
void loadTextures()
{
textureLoader->loadTexture(
getAssetPath() + "textures/goblin.ktx",
getAssetPath() + "textures/goblin_bc3.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.colorMap);
textureLoader->loadTexture(
getAssetPath() + "textures/stonefloor_color_specular_bc3.ktx",
getAssetPath() + "textures/pattern_35_bc3.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.floor);
}
@ -983,18 +990,16 @@ public:
}
// Update bones
std::vector<aiMatrix4x4> boneTransforms;
boneTransform(runningTime, boneTransforms);
for (uint32_t i = 0; i < boneTransforms.size(); i++)
skinnedMesh->update(runningTime);
for (uint32_t i = 0; i < skinnedMesh->boneTransforms.size(); i++)
{
uboVS.bones[i] = glm::transpose(glm::make_mat4(&boneTransforms[i].a1));
uboVS.bones[i] = glm::transpose(glm::make_mat4(&skinnedMesh->boneTransforms[i].a1));
}
memcpy(uniformData.vsScene.mapped, &uboVS, sizeof(uboVS));
// Update floor animation
uboFloor.uvOffset.t -= 0.35f * frameTimer;
uboFloor.uvOffset.t -= 0.5f * skinnedMesh->animationSpeed * frameTimer;
memcpy(uniformData.floor.mapped, &uboFloor, sizeof(uboFloor));
}
@ -1021,7 +1026,7 @@ public:
draw();
if (!paused)
{
runningTime += frameTimer * 0.75f;
runningTime += frameTimer * skinnedMesh->animationSpeed;
vkDeviceWaitIdle(device);
updateUniformBuffers(false);
}
@ -1032,6 +1037,12 @@ public:
vkDeviceWaitIdle(device);
updateUniformBuffers(true);
}
void changeAnimationSpeed(float delta)
{
skinnedMesh->animationSpeed += delta;
std::cout << "Animation speed = " << skinnedMesh->animationSpeed << std::endl;
}
};
VulkanExample *vulkanExample;
@ -1042,6 +1053,16 @@ LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
if (uMsg == WM_KEYDOWN)
{
switch (wParam)
{
case VK_ADD:
case VK_SUBTRACT:
vulkanExample->changeAnimationSpeed((wParam == VK_ADD) ? 0.1f : -0.1f);
break;
}
}
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}