Use base texture loading code for compute shader example, renamed main

This commit is contained in:
saschawillems 2016-03-09 21:17:26 +01:00
parent 575c5c2060
commit 72ff2a3866
3 changed files with 6 additions and 323 deletions

View file

@ -216,7 +216,7 @@
<ClCompile Include="..\..\..\base\vulkanandroid.cpp" /> <ClCompile Include="..\..\..\base\vulkanandroid.cpp" />
<ClCompile Include="..\..\..\base\vulkantools.cpp" /> <ClCompile Include="..\..\..\base\vulkantools.cpp" />
<ClCompile Include="android_native_app_glue.c" /> <ClCompile Include="android_native_app_glue.c" />
<ClCompile Include="main.cpp" /> <ClCompile Include="computeparticles.cpp" />
</ItemGroup> </ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets"> <ImportGroup Label="ExtensionTargets">

View file

@ -8,8 +8,8 @@
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClCompile Include="android_native_app_glue.c" /> <ClCompile Include="android_native_app_glue.c" />
<ClCompile Include="main.cpp" />
<ClCompile Include="..\..\..\base\vulkanandroid.cpp" /> <ClCompile Include="..\..\..\base\vulkanandroid.cpp" />
<ClCompile Include="..\..\..\base\vulkantools.cpp" /> <ClCompile Include="..\..\..\base\vulkantools.cpp" />
<ClCompile Include="computeparticles.cpp" />
</ItemGroup> </ItemGroup>
</Project> </Project>

View file

@ -18,7 +18,7 @@
#include <android/asset_manager.h> #include <android/asset_manager.h>
#define GLM_FORCE_RADIANS #define GLM_FORCE_RADIANS
#define GLM_DEPTH_ZERO_TO_ONE #define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include "glm/glm.hpp" #include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp" #include "glm/gtc/matrix_transform.hpp"
@ -49,15 +49,7 @@ public:
float uv[2]; float uv[2];
}; };
struct Texture { Texture texture;
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
} texture;
VkDescriptorSetLayout descriptorSetLayout; VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet; VkDescriptorSet descriptorSet;
@ -97,316 +89,6 @@ public:
vkTools::UniformData uniformDataCompute; vkTools::UniformData uniformDataCompute;
void loadTexture(const char* fileName, VkFormat format, bool forceLinearTiling)
{
VkFormatProperties formatProperties;
VkResult err;
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
//char *textureData = new char[size];
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2D tex2D(gli::load((const char*)textureData, size));
assert(!tex2D.empty());
texture.width = tex2D[0].dimensions().x;
texture.height = tex2D[0].dimensions().y;
texture.mipLevels = tex2D.levels();
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
// Only use linear tiling if forced
if (forceLinearTiling)
{
// Don't use linear if format is not supported for (linear) shader sampling
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
}
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
startSetupCommandBuffer();
if (useStaging)
{
// Load all available mip levels into linear textures
// and copy to optimal tiling target
struct MipLevel {
VkImage image;
VkDeviceMemory memory;
};
std::vector<MipLevel> mipLevels;
mipLevels.resize(texture.mipLevels);
// Copy mip levels
for (uint32_t level = 0; level < texture.mipLevels; ++level)
{
imageCreateInfo.extent.width = tex2D[level].dimensions().x;
imageCreateInfo.extent.height = tex2D[level].dimensions().y;
imageCreateInfo.extent.depth = 1;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image);
assert(!err);
vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory);
assert(!err);
err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data);
assert(!err);
size_t levelSize = tex2D[level].size();
memcpy(data, tex2D[level].data(), levelSize);
vkUnmapMemory(device, mipLevels[level].memory);
LOGW("setImageLayout %d", 1);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
vkTools::setImageLayout(
setupCmdBuffer,
mipLevels[level].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image);
assert(!err);
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, texture.image, texture.deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy mip levels one by one
for (uint32_t level = 0; level < texture.mipLevels; ++level)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = 0;
// Set mip level to copy the linear image to
copyRegion.dstSubresource.mipLevel = level;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = tex2D[level].dimensions().x;
copyRegion.extent.height = tex2D[level].dimensions().y;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
setupCmdBuffer,
mipLevels[level].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture.imageLayout);
}
// Clean up linear images
// No longer required after mip levels
// have been transformed over to optimal tiling
for (auto& level : mipLevels)
{
vkDestroyImage(device, level.image, nullptr);
vkFreeMemory(device, level.memory, nullptr);
}
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
assert(!err);
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate host memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
assert(!err);
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
assert(!err);
// Map image memory
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
assert(!err);
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture.image = mappableImage;
texture.deviceMemory = mappableMemory;
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
texture.imageLayout);
}
flushSetupCommandBuffer();
// Create sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the
// texture data
// This means you could have multiple sampler objects
// for the same texture with different settings
// Similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Max level-of-detail should match mip level count
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
// Enable anisotropic filtering
sampler.maxAnisotropy = 8;
sampler.anisotropyEnable = VK_TRUE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture.sampler);
assert(!err);
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
view.image = texture.image;
err = vkCreateImageView(device, &view, nullptr, &texture.view);
assert(!err);
}
// Free staging resources used while creating a texture
void destroyTextureImage(struct Texture texture)
{
vkDestroyImage(device, texture.image, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void initVulkan() void initVulkan()
{ {
VulkanAndroidExampleBase::initVulkan(); VulkanAndroidExampleBase::initVulkan();
@ -414,6 +96,7 @@ public:
loadTexture( loadTexture(
"textures/android_robot.ktx", "textures/android_robot.ktx",
VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_UNORM,
&texture,
false); false);
createCommandBuffers(); createCommandBuffers();
@ -453,7 +136,7 @@ public:
vkDestroyBuffer(device, computeStorageBuffer.buffer, nullptr); vkDestroyBuffer(device, computeStorageBuffer.buffer, nullptr);
vkFreeMemory(device, computeStorageBuffer.memory, nullptr); vkFreeMemory(device, computeStorageBuffer.memory, nullptr);
destroyTextureImage(texture); destroyTextureImage(&texture);
vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer); vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer);