Fixed image memory barriers, code cleanup, additional comments
Refs #494
This commit is contained in:
parent
ba332da0bc
commit
756c70f089
1 changed files with 100 additions and 157 deletions
|
|
@ -109,73 +109,23 @@ public:
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
// Create an image memory barrier used to change the layout of an image and put it into an active command buffer
|
/*
|
||||||
void setImageLayout(VkCommandBuffer cmdBuffer, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout, VkImageSubresourceRange subresourceRange)
|
Upload texture image data to the GPU
|
||||||
{
|
|
||||||
// Create an image barrier object
|
|
||||||
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
|
|
||||||
imageMemoryBarrier.oldLayout = oldImageLayout;
|
|
||||||
imageMemoryBarrier.newLayout = newImageLayout;
|
|
||||||
imageMemoryBarrier.image = image;
|
|
||||||
imageMemoryBarrier.subresourceRange = subresourceRange;
|
|
||||||
|
|
||||||
// Only sets masks for layouts used in this example
|
Vulkan offers two types of image tiling (memory layout):
|
||||||
// For a more complete version that can be used with other layouts see vks::tools::setImageLayout
|
|
||||||
|
|
||||||
// Source layouts (old)
|
Linear tiled images:
|
||||||
switch (oldImageLayout)
|
These are stored as is and can be copied directly to. But due to the linear nature they're not a good match for GPUs and format and feature support is very limited.
|
||||||
{
|
It's not advised to use linear tiled images for anything else than copying from host to GPU if buffer copies are not an option.
|
||||||
case VK_IMAGE_LAYOUT_UNDEFINED:
|
Linear tiling is thus only implemented for learning purposes, one should always prefer optimal tiled image.
|
||||||
// Only valid as initial layout, memory contents are not preserved
|
|
||||||
// Can be accessed directly, no source dependency required
|
|
||||||
imageMemoryBarrier.srcAccessMask = 0;
|
|
||||||
break;
|
|
||||||
case VK_IMAGE_LAYOUT_PREINITIALIZED:
|
|
||||||
// Only valid as initial layout for linear images, preserves memory contents
|
|
||||||
// Make sure host writes to the image have been finished
|
|
||||||
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
|
|
||||||
break;
|
|
||||||
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
||||||
// Old layout is transfer destination
|
|
||||||
// Make sure any writes to the image have been finished
|
|
||||||
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Target layouts (new)
|
Optimal tiled images:
|
||||||
switch (newImageLayout)
|
These are stored in an implementation specific layout matching the capability of the hardware. They usually support more formats and features and are much faster.
|
||||||
{
|
Optimal tiled images are stored on the device and not accessible by the host. So they can't be written directly to (like liner tiled images) and always require
|
||||||
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
|
some sort of data copy, either from a buffer or a linear tiled image.
|
||||||
// Transfer source (copy, blit)
|
|
||||||
// Make sure any reads from the image have been finished
|
|
||||||
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
||||||
break;
|
|
||||||
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
|
|
||||||
// Transfer destination (copy, blit)
|
|
||||||
// Make sure any writes to the image have been finished
|
|
||||||
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
||||||
break;
|
|
||||||
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
|
|
||||||
// Shader read (sampler, input attachment)
|
|
||||||
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Put barrier on top of pipeline
|
|
||||||
VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
||||||
VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
||||||
|
|
||||||
// Put barrier inside setup command buffer
|
|
||||||
vkCmdPipelineBarrier(
|
|
||||||
cmdBuffer,
|
|
||||||
srcStageFlags,
|
|
||||||
destStageFlags,
|
|
||||||
VK_FLAGS_NONE,
|
|
||||||
0, nullptr,
|
|
||||||
0, nullptr,
|
|
||||||
1, &imageMemoryBarrier);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
In Short: Always use optimal tiled images for rendering.
|
||||||
|
*/
|
||||||
void loadTexture()
|
void loadTexture()
|
||||||
{
|
{
|
||||||
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
|
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
|
||||||
|
|
@ -183,10 +133,6 @@ public:
|
||||||
// Texture data contains 4 channels (RGBA) with unnormalized 8-bit values, this is the most commonly supported format
|
// Texture data contains 4 channels (RGBA) with unnormalized 8-bit values, this is the most commonly supported format
|
||||||
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
|
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
|
||||||
|
|
||||||
// Set to true to use linear tiled images
|
|
||||||
// This is just for learning purposes and not suggested, as linear tiled images are pretty restricted and often only support a small set of features (e.g. no mips, etc.)
|
|
||||||
bool forceLinearTiling = false;
|
|
||||||
|
|
||||||
#if defined(__ANDROID__)
|
#if defined(__ANDROID__)
|
||||||
// Textures are stored inside the apk on Android (compressed)
|
// Textures are stored inside the apk on Android (compressed)
|
||||||
// So they need to be loaded via the asset manager
|
// So they need to be loaded via the asset manager
|
||||||
|
|
@ -206,35 +152,32 @@ public:
|
||||||
|
|
||||||
assert(!tex2D.empty());
|
assert(!tex2D.empty());
|
||||||
|
|
||||||
VkFormatProperties formatProperties;
|
|
||||||
|
|
||||||
texture.width = static_cast<uint32_t>(tex2D[0].extent().x);
|
texture.width = static_cast<uint32_t>(tex2D[0].extent().x);
|
||||||
texture.height = static_cast<uint32_t>(tex2D[0].extent().y);
|
texture.height = static_cast<uint32_t>(tex2D[0].extent().y);
|
||||||
texture.mipLevels = static_cast<uint32_t>(tex2D.levels());
|
texture.mipLevels = static_cast<uint32_t>(tex2D.levels());
|
||||||
|
|
||||||
// Get device properites for the requested texture format
|
// We prefer using staging to copy the texture data to a device local optimal image
|
||||||
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
||||||
|
|
||||||
// Only use linear tiling if requested (and supported by the device)
|
|
||||||
// Support for linear tiling is mostly limited, so prefer to use
|
|
||||||
// optimal tiling instead
|
|
||||||
// On most implementations linear tiling will only support a very
|
|
||||||
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
|
|
||||||
VkBool32 useStaging = true;
|
VkBool32 useStaging = true;
|
||||||
|
|
||||||
// Only use linear tiling if forced
|
// Only use linear tiling if forced
|
||||||
if (forceLinearTiling)
|
bool forceLinearTiling = false;
|
||||||
{
|
if (forceLinearTiling) {
|
||||||
// Don't use linear if format is not supported for (linear) shader sampling
|
// Don't use linear if format is not supported for (linear) shader sampling
|
||||||
|
// Get device properites for the requested texture format
|
||||||
|
VkFormatProperties formatProperties;
|
||||||
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
||||||
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
|
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
|
||||||
}
|
}
|
||||||
|
|
||||||
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
||||||
VkMemoryRequirements memReqs = {};
|
VkMemoryRequirements memReqs = {};
|
||||||
|
|
||||||
if (useStaging)
|
if (useStaging) {
|
||||||
{
|
// Copy data to an optimal tiled image
|
||||||
|
// This loads the texture data into a host local buffer that is copied to the optimal tiled image on the device
|
||||||
|
|
||||||
// Create a host-visible staging buffer that contains the raw image data
|
// Create a host-visible staging buffer that contains the raw image data
|
||||||
|
// This buffer will be the data source for copying texture data to the optimal tiled image on the device
|
||||||
VkBuffer stagingBuffer;
|
VkBuffer stagingBuffer;
|
||||||
VkDeviceMemory stagingMemory;
|
VkDeviceMemory stagingMemory;
|
||||||
|
|
||||||
|
|
@ -243,20 +186,17 @@ public:
|
||||||
// This buffer is used as a transfer source for the buffer copy
|
// This buffer is used as a transfer source for the buffer copy
|
||||||
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
||||||
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||||
|
|
||||||
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
||||||
|
|
||||||
// Get memory requirements for the staging buffer (alignment, memory type bits)
|
// Get memory requirements for the staging buffer (alignment, memory type bits)
|
||||||
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
||||||
|
|
||||||
memAllocInfo.allocationSize = memReqs.size;
|
memAllocInfo.allocationSize = memReqs.size;
|
||||||
// Get memory type index for a host visible buffer
|
// Get memory type index for a host visible buffer
|
||||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
||||||
|
|
||||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
||||||
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
||||||
|
|
||||||
// Copy texture data into staging buffer
|
// Copy texture data into host local staging buffer
|
||||||
uint8_t *data;
|
uint8_t *data;
|
||||||
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
|
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
|
||||||
memcpy(data, tex2D.data(), tex2D.size());
|
memcpy(data, tex2D.data(), tex2D.size());
|
||||||
|
|
@ -266,8 +206,7 @@ public:
|
||||||
std::vector<VkBufferImageCopy> bufferCopyRegions;
|
std::vector<VkBufferImageCopy> bufferCopyRegions;
|
||||||
uint32_t offset = 0;
|
uint32_t offset = 0;
|
||||||
|
|
||||||
for (uint32_t i = 0; i < texture.mipLevels; i++)
|
for (uint32_t i = 0; i < texture.mipLevels; i++) {
|
||||||
{
|
|
||||||
VkBufferImageCopy bufferCopyRegion = {};
|
VkBufferImageCopy bufferCopyRegion = {};
|
||||||
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||||
bufferCopyRegion.imageSubresource.mipLevel = i;
|
bufferCopyRegion.imageSubresource.mipLevel = i;
|
||||||
|
|
@ -283,7 +222,7 @@ public:
|
||||||
offset += static_cast<uint32_t>(tex2D[i].size());
|
offset += static_cast<uint32_t>(tex2D[i].size());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Create optimal tiled target image
|
// Create optimal tiled target image on the device
|
||||||
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
||||||
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
||||||
imageCreateInfo.format = format;
|
imageCreateInfo.format = format;
|
||||||
|
|
@ -296,22 +235,19 @@ public:
|
||||||
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||||
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
||||||
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
||||||
|
|
||||||
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
|
||||||
|
|
||||||
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
||||||
|
|
||||||
memAllocInfo.allocationSize = memReqs.size;
|
memAllocInfo.allocationSize = memReqs.size;
|
||||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||||
|
|
||||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
|
||||||
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
|
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
|
||||||
|
|
||||||
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||||
|
|
||||||
// Image barrier for optimal image
|
// Image memory barriers for the texture image
|
||||||
|
|
||||||
// The sub resource range describes the regions of the image we will be transition
|
// The sub resource range describes the regions of the image that will be transitioned using the memory barriers below
|
||||||
VkImageSubresourceRange subresourceRange = {};
|
VkImageSubresourceRange subresourceRange = {};
|
||||||
// Image only contains color data
|
// Image only contains color data
|
||||||
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||||
|
|
@ -322,15 +258,26 @@ public:
|
||||||
// The 2D texture only has one layer
|
// The 2D texture only has one layer
|
||||||
subresourceRange.layerCount = 1;
|
subresourceRange.layerCount = 1;
|
||||||
|
|
||||||
// Optimal image will be used as destination for the copy, so we must transfer from our
|
// Transition the texture image layout to transfer target, so we can safely copy our buffer data to it.
|
||||||
// initial undefined image layout to the transfer destination layout
|
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
|
||||||
setImageLayout(
|
imageMemoryBarrier.image = texture.image;
|
||||||
|
imageMemoryBarrier.subresourceRange = subresourceRange;
|
||||||
|
imageMemoryBarrier.srcAccessMask = 0;
|
||||||
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
||||||
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||||
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
||||||
|
|
||||||
|
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
|
||||||
|
// Source pipeline stage is host write/read exection (VK_PIPELINE_STAGE_HOST_BIT)
|
||||||
|
// Destination pipeline stage is copy command exection (VK_PIPELINE_STAGE_TRANSFER_BIT)
|
||||||
|
vkCmdPipelineBarrier(
|
||||||
copyCmd,
|
copyCmd,
|
||||||
texture.image,
|
VK_PIPELINE_STAGE_HOST_BIT,
|
||||||
VK_IMAGE_ASPECT_COLOR_BIT,
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
||||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
0,
|
||||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
0, nullptr,
|
||||||
subresourceRange);
|
0, nullptr,
|
||||||
|
1, &imageMemoryBarrier);
|
||||||
|
|
||||||
// Copy mip levels from staging buffer
|
// Copy mip levels from staging buffer
|
||||||
vkCmdCopyBufferToImage(
|
vkCmdCopyBufferToImage(
|
||||||
|
|
@ -341,24 +288,35 @@ public:
|
||||||
static_cast<uint32_t>(bufferCopyRegions.size()),
|
static_cast<uint32_t>(bufferCopyRegions.size()),
|
||||||
bufferCopyRegions.data());
|
bufferCopyRegions.data());
|
||||||
|
|
||||||
// Change texture image layout to shader read after all mip levels have been copied
|
// Once the data has been uploaded we transfer to the texture image to the shader read layout, so it can be sampled from
|
||||||
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
||||||
setImageLayout(
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
||||||
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
||||||
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||||
|
|
||||||
|
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
|
||||||
|
// Source pipeline stage stage is copy command exection (VK_PIPELINE_STAGE_TRANSFER_BIT)
|
||||||
|
// Destination pipeline stage fragment shader access (VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)
|
||||||
|
vkCmdPipelineBarrier(
|
||||||
copyCmd,
|
copyCmd,
|
||||||
texture.image,
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
||||||
VK_IMAGE_ASPECT_COLOR_BIT,
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
||||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
0,
|
||||||
texture.imageLayout,
|
0, nullptr,
|
||||||
subresourceRange);
|
0, nullptr,
|
||||||
|
1, &imageMemoryBarrier);
|
||||||
|
|
||||||
|
// Store current layout for later reuse
|
||||||
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||||
|
|
||||||
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
||||||
|
|
||||||
// Clean up staging resources
|
// Clean up staging resources
|
||||||
vkFreeMemory(device, stagingMemory, nullptr);
|
vkFreeMemory(device, stagingMemory, nullptr);
|
||||||
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
||||||
}
|
} else {
|
||||||
else
|
// Copy data to a linear tiled image
|
||||||
{
|
|
||||||
VkImage mappableImage;
|
VkImage mappableImage;
|
||||||
VkDeviceMemory mappableMemory;
|
VkDeviceMemory mappableMemory;
|
||||||
|
|
||||||
|
|
@ -376,69 +334,57 @@ public:
|
||||||
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
||||||
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage));
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage));
|
||||||
|
|
||||||
// Get memory requirements for this image
|
// Get memory requirements for this image like size and alignment
|
||||||
// like size and alignment
|
|
||||||
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
|
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
|
||||||
// Set memory allocation size to required memory size
|
// Set memory allocation size to required memory size
|
||||||
memAllocInfo.allocationSize = memReqs.size;
|
memAllocInfo.allocationSize = memReqs.size;
|
||||||
|
|
||||||
// Get memory type that can be mapped to host memory
|
// Get memory type that can be mapped to host memory
|
||||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
||||||
|
|
||||||
// Allocate host memory
|
|
||||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory));
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory));
|
||||||
|
|
||||||
// Bind allocated image for use
|
|
||||||
VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0));
|
VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0));
|
||||||
|
|
||||||
// Get sub resource layout
|
|
||||||
// Mip map count, array layer, etc.
|
|
||||||
VkImageSubresource subRes = {};
|
|
||||||
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
||||||
|
|
||||||
VkSubresourceLayout subResLayout;
|
|
||||||
void *data;
|
|
||||||
|
|
||||||
// Get sub resources layout
|
|
||||||
// Includes row pitch, size offsets, etc.
|
|
||||||
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
|
|
||||||
|
|
||||||
// Map image memory
|
// Map image memory
|
||||||
|
void *data;
|
||||||
VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data));
|
VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data));
|
||||||
|
// Copy image data of the first mip level into memory
|
||||||
// Copy image data into memory
|
memcpy(data, tex2D[0].data(), tex2D[0].size());
|
||||||
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
|
|
||||||
|
|
||||||
vkUnmapMemory(device, mappableMemory);
|
vkUnmapMemory(device, mappableMemory);
|
||||||
|
|
||||||
// Linear tiled images don't need to be staged
|
// Linear tiled images don't need to be staged and can be directly used as textures
|
||||||
// and can be directly used as textures
|
|
||||||
texture.image = mappableImage;
|
texture.image = mappableImage;
|
||||||
texture.deviceMemory = mappableMemory;
|
texture.deviceMemory = mappableMemory;
|
||||||
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||||
|
|
||||||
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
||||||
|
|
||||||
// Setup image memory barrier transfer image to shader read layout
|
// Setup image memory barrier transfer image to shader read layout
|
||||||
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||||
|
|
||||||
// The sub resource range describes the regions of the image we will be transition
|
// The sub resource range describes the regions of the image we will be transition
|
||||||
VkImageSubresourceRange subresourceRange = {};
|
VkImageSubresourceRange subresourceRange = {};
|
||||||
// Image only contains color data
|
|
||||||
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||||
// Start at first mip level
|
|
||||||
subresourceRange.baseMipLevel = 0;
|
subresourceRange.baseMipLevel = 0;
|
||||||
// Only one mip level, most implementations won't support more for linear tiled images
|
|
||||||
subresourceRange.levelCount = 1;
|
subresourceRange.levelCount = 1;
|
||||||
// The 2D texture only has one layer
|
|
||||||
subresourceRange.layerCount = 1;
|
subresourceRange.layerCount = 1;
|
||||||
|
|
||||||
setImageLayout(
|
// Transition the texture image layout to shader read, so it can be sampled from
|
||||||
|
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
|
||||||
|
imageMemoryBarrier.image = texture.image;
|
||||||
|
imageMemoryBarrier.subresourceRange = subresourceRange;
|
||||||
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
|
||||||
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
||||||
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
||||||
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||||
|
|
||||||
|
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
|
||||||
|
// Source pipeline stage is host write/read exection (VK_PIPELINE_STAGE_HOST_BIT)
|
||||||
|
// Destination pipeline stage fragment shader access (VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)
|
||||||
|
vkCmdPipelineBarrier(
|
||||||
copyCmd,
|
copyCmd,
|
||||||
texture.image,
|
VK_PIPELINE_STAGE_HOST_BIT,
|
||||||
VK_IMAGE_ASPECT_COLOR_BIT,
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
||||||
VK_IMAGE_LAYOUT_PREINITIALIZED,
|
0,
|
||||||
texture.imageLayout,
|
0, nullptr,
|
||||||
subresourceRange);
|
0, nullptr,
|
||||||
|
1, &imageMemoryBarrier);
|
||||||
|
|
||||||
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
||||||
}
|
}
|
||||||
|
|
@ -461,14 +407,11 @@ public:
|
||||||
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
|
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
|
||||||
// Enable anisotropic filtering
|
// Enable anisotropic filtering
|
||||||
// This feature is optional, so we must check if it's supported on the device
|
// This feature is optional, so we must check if it's supported on the device
|
||||||
if (vulkanDevice->features.samplerAnisotropy)
|
if (vulkanDevice->features.samplerAnisotropy) {
|
||||||
{
|
|
||||||
// Use max. level of anisotropy for this example
|
// Use max. level of anisotropy for this example
|
||||||
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
|
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
|
||||||
sampler.anisotropyEnable = VK_TRUE;
|
sampler.anisotropyEnable = VK_TRUE;
|
||||||
}
|
} else {
|
||||||
else
|
|
||||||
{
|
|
||||||
// The device does not support anisotropic filtering
|
// The device does not support anisotropic filtering
|
||||||
sampler.maxAnisotropy = 1.0;
|
sampler.maxAnisotropy = 1.0;
|
||||||
sampler.anisotropyEnable = VK_FALSE;
|
sampler.anisotropyEnable = VK_FALSE;
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue