Calculate terrain normals and enable lighting
This commit is contained in:
parent
c26e1b7918
commit
81bd22834e
5 changed files with 84 additions and 33 deletions
|
|
@ -3,17 +3,17 @@
|
||||||
#extension GL_ARB_separate_shader_objects : enable
|
#extension GL_ARB_separate_shader_objects : enable
|
||||||
#extension GL_ARB_shading_language_420pack : enable
|
#extension GL_ARB_shading_language_420pack : enable
|
||||||
|
|
||||||
layout (set = 0, binding = 1) uniform sampler2D displacementMap;
|
layout (set = 0, binding = 1) uniform sampler2D samplerHeight;
|
||||||
layout (set = 0, binding = 2) uniform sampler2DArray terrainLayers;
|
layout (set = 0, binding = 2) uniform sampler2DArray samplerLayers;
|
||||||
|
|
||||||
layout (location = 0) in vec3 inNormal;
|
layout (location = 0) in vec3 inNormal;
|
||||||
layout (location = 1) in vec2 inUV;
|
layout (location = 1) in vec2 inUV;
|
||||||
layout (location = 2) in vec3 inEyePos;
|
layout (location = 2) in vec3 inViewVec;
|
||||||
layout (location = 3) in vec3 inLightVec;
|
layout (location = 3) in vec3 inLightVec;
|
||||||
|
|
||||||
layout (location = 0) out vec4 outFragColor;
|
layout (location = 0) out vec4 outFragColor;
|
||||||
|
|
||||||
vec4 sampleTerrainLayer()
|
vec3 sampleTerrainLayer()
|
||||||
{
|
{
|
||||||
// Define some layer ranges for sampling depending on terrain height
|
// Define some layer ranges for sampling depending on terrain height
|
||||||
vec2 layers[6];
|
vec2 layers[6];
|
||||||
|
|
@ -27,33 +27,24 @@ vec4 sampleTerrainLayer()
|
||||||
vec3 color = vec3(0.0);
|
vec3 color = vec3(0.0);
|
||||||
|
|
||||||
// Get height from displacement map
|
// Get height from displacement map
|
||||||
float height = textureLod(displacementMap, inUV, 0.0).r * 255.0;
|
float height = textureLod(samplerHeight, inUV, 0.0).r * 255.0;
|
||||||
|
|
||||||
for (int i = 0; i < 6; i++)
|
for (int i = 0; i < 6; i++)
|
||||||
{
|
{
|
||||||
float range = layers[i].y - layers[i].x;
|
float range = layers[i].y - layers[i].x;
|
||||||
float weight = (range - abs(height - layers[i].y)) / range;
|
float weight = (range - abs(height - layers[i].y)) / range;
|
||||||
weight = max(0.0, weight);
|
weight = max(0.0, weight);
|
||||||
color += weight * texture(terrainLayers, vec3(inUV * 16.0, i)).rgb;
|
color += weight * texture(samplerLayers, vec3(inUV * 16.0, i)).rgb;
|
||||||
}
|
}
|
||||||
|
|
||||||
return vec4(color, 1.0);
|
return color;
|
||||||
}
|
}
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
/* todo: no lighting yet
|
|
||||||
vec3 N = normalize(inNormal);
|
vec3 N = normalize(inNormal);
|
||||||
vec3 L = normalize(vec3(1.0));
|
vec3 L = normalize(inLightVec);
|
||||||
vec3 Eye = normalize(inEyePos);
|
vec3 ambient = vec3(0.5);
|
||||||
vec3 Reflected = normalize(reflect(-inLightVec, inNormal));
|
vec3 diffuse = max(dot(N, L), 0.0) * vec3(1.0);
|
||||||
|
outFragColor = vec4((ambient + diffuse) * sampleTerrainLayer(), 1.0);
|
||||||
vec4 IAmbient = vec4(vec3(0.15), 1.0);
|
|
||||||
vec4 IDiffuse = vec4(1.0) * max(dot(inNormal, inLightVec), 0.0);
|
|
||||||
|
|
||||||
outFragColor = vec4((IAmbient + IDiffuse) * vec4(texture(terrainLayers, vec3(inUV, 0.0)).rgb, 1.0));
|
|
||||||
*/
|
|
||||||
outFragColor = sampleTerrainLayer();
|
|
||||||
|
|
||||||
//outFragColor.rgb = normalize(inNormal);
|
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Binary file not shown.
|
|
@ -24,7 +24,7 @@ layout (location = 1) in vec2 inUV[];
|
||||||
|
|
||||||
layout (location = 0) out vec3 outNormal;
|
layout (location = 0) out vec3 outNormal;
|
||||||
layout (location = 1) out vec2 outUV;
|
layout (location = 1) out vec2 outUV;
|
||||||
layout (location = 2) out vec3 outEyePos;
|
layout (location = 2) out vec3 outViewVec;
|
||||||
layout (location = 3) out vec3 outLightVec;
|
layout (location = 3) out vec3 outLightVec;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
|
|
@ -34,10 +34,9 @@ void main()
|
||||||
vec2 uv2 = mix(inUV[3], inUV[2], gl_TessCoord.x);
|
vec2 uv2 = mix(inUV[3], inUV[2], gl_TessCoord.x);
|
||||||
outUV = mix(uv1, uv2, gl_TessCoord.y);
|
outUV = mix(uv1, uv2, gl_TessCoord.y);
|
||||||
|
|
||||||
// Interpolate normals
|
vec3 n1 = mix(inNormal[0], inNormal[1], gl_TessCoord.x);
|
||||||
vec3 nm1 = mix(inNormal[0], inNormal[1], gl_TessCoord.x);
|
vec3 n2 = mix(inNormal[3], inNormal[2], gl_TessCoord.x);
|
||||||
vec3 nm2 = mix(inNormal[3], inNormal[2], gl_TessCoord.x);
|
outNormal = mix(n1, n2, gl_TessCoord.y);
|
||||||
outNormal = mix(nm1, nm2, gl_TessCoord.y);
|
|
||||||
|
|
||||||
// Interpolate positions
|
// Interpolate positions
|
||||||
vec4 pos1 = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_TessCoord.x);
|
vec4 pos1 = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_TessCoord.x);
|
||||||
|
|
@ -49,6 +48,6 @@ void main()
|
||||||
gl_Position = ubo.projection * ubo.modelview * pos;
|
gl_Position = ubo.projection * ubo.modelview * pos;
|
||||||
|
|
||||||
// Calculate vectors for lighting based on tessellated position
|
// Calculate vectors for lighting based on tessellated position
|
||||||
outEyePos = -pos.xyz;
|
outViewVec = -pos.xyz;
|
||||||
outLightVec = normalize(ubo.lightPos.xyz + outEyePos);
|
outLightVec = normalize(ubo.lightPos.xyz + outViewVec);
|
||||||
}
|
}
|
||||||
Binary file not shown.
|
|
@ -11,6 +11,7 @@
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#include <assert.h>
|
#include <assert.h>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include <algorithm>
|
||||||
|
|
||||||
#define GLM_FORCE_RADIANS
|
#define GLM_FORCE_RADIANS
|
||||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||||
|
|
@ -65,7 +66,7 @@ public:
|
||||||
struct {
|
struct {
|
||||||
glm::mat4 projection;
|
glm::mat4 projection;
|
||||||
glm::mat4 modelview;
|
glm::mat4 modelview;
|
||||||
glm::vec4 lightPos = glm::vec4(0.0f, -2.0f, 0.0f, 0.0f);
|
glm::vec4 lightPos = glm::vec4(-48.0f, -40.0f, 46.0f, 0.0f);
|
||||||
glm::vec4 frustumPlanes[6];
|
glm::vec4 frustumPlanes[6];
|
||||||
float displacementFactor = 32.0f;
|
float displacementFactor = 32.0f;
|
||||||
float tessellationFactor = 0.75f;
|
float tessellationFactor = 0.75f;
|
||||||
|
|
@ -117,10 +118,9 @@ public:
|
||||||
title = "Vulkan Example - Dynamic terrain tessellation";
|
title = "Vulkan Example - Dynamic terrain tessellation";
|
||||||
camera.type = Camera::CameraType::firstperson;
|
camera.type = Camera::CameraType::firstperson;
|
||||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
||||||
camera.setRotation(glm::vec3(-6.0f, -56.0f, 0.0f));
|
camera.setRotation(glm::vec3(-11.0f, 56.0f, 0.0f));
|
||||||
camera.setTranslation(glm::vec3(-45.0f, 14.0f, -28.5f));
|
camera.setTranslation(glm::vec3(60.0f, 20.5f, -44.0f));
|
||||||
camera.movementSpeed = 7.5f;
|
camera.movementSpeed = 7.5f;
|
||||||
timerSpeed *= 15.0f;
|
|
||||||
// Support for tessellation shaders is optional, so check first
|
// Support for tessellation shaders is optional, so check first
|
||||||
//if (!deviceFeatures.tessellationShader)
|
//if (!deviceFeatures.tessellationShader)
|
||||||
//{
|
//{
|
||||||
|
|
@ -331,6 +331,38 @@ public:
|
||||||
loadMesh(getAssetPath() + "models/geosphere.obj", &meshes.skysphere, vertexLayout, 1.0f);
|
loadMesh(getAssetPath() + "models/geosphere.obj", &meshes.skysphere, vertexLayout, 1.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Encapsulate height map data for easy sampling
|
||||||
|
struct HeightMap
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
uint16_t *heightdata;
|
||||||
|
uint32_t dim;
|
||||||
|
uint32_t scale;
|
||||||
|
public:
|
||||||
|
HeightMap(std::string filename, uint32_t patchsize)
|
||||||
|
{
|
||||||
|
gli::texture2D heightTex(gli::load(filename));
|
||||||
|
dim = heightTex.dimensions().x;
|
||||||
|
heightdata = new uint16_t[dim * dim];
|
||||||
|
memcpy(heightdata, heightTex.data(), heightTex.size());
|
||||||
|
this->scale = dim / patchsize;
|
||||||
|
};
|
||||||
|
|
||||||
|
~HeightMap()
|
||||||
|
{
|
||||||
|
delete[] heightdata;
|
||||||
|
}
|
||||||
|
|
||||||
|
float getHeight(uint32_t x, uint32_t y)
|
||||||
|
{
|
||||||
|
glm::ivec2 rpos = glm::ivec2(x, y) * glm::ivec2(scale);
|
||||||
|
rpos.x = std::max(0, std::min(rpos.x, (int)dim-1));
|
||||||
|
rpos.y = std::max(0, std::min(rpos.y, (int)dim-1));
|
||||||
|
rpos /= glm::ivec2(scale);
|
||||||
|
return *(heightdata + (rpos.x + rpos.y * dim) * scale) / 65535.0f;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
// Generate a terrain quad patch for feeding to the tessellation control shader
|
// Generate a terrain quad patch for feeding to the tessellation control shader
|
||||||
void generateTerrain()
|
void generateTerrain()
|
||||||
{
|
{
|
||||||
|
|
@ -356,11 +388,41 @@ public:
|
||||||
vertices[index].pos[0] = x * wx + wx / 2.0f - (float)PATCH_SIZE * wx / 2.0f;
|
vertices[index].pos[0] = x * wx + wx / 2.0f - (float)PATCH_SIZE * wx / 2.0f;
|
||||||
vertices[index].pos[1] = 0.0f;
|
vertices[index].pos[1] = 0.0f;
|
||||||
vertices[index].pos[2] = y * wy + wy / 2.0f - (float)PATCH_SIZE * wy / 2.0f;
|
vertices[index].pos[2] = y * wy + wy / 2.0f - (float)PATCH_SIZE * wy / 2.0f;
|
||||||
vertices[index].normal = glm::vec3(0.0f, 1.0f, 0.0f);
|
|
||||||
vertices[index].uv = glm::vec2((float)x / PATCH_SIZE, (float)y / PATCH_SIZE) * UV_SCALE;
|
vertices[index].uv = glm::vec2((float)x / PATCH_SIZE, (float)y / PATCH_SIZE) * UV_SCALE;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Calculate normals from height map using a sobel filter
|
||||||
|
HeightMap heightMap(getAssetPath() + "textures/terrain_heightmap_r16.ktx", PATCH_SIZE);
|
||||||
|
for (auto x = 0; x < PATCH_SIZE; x++)
|
||||||
|
{
|
||||||
|
for (auto y = 0; y < PATCH_SIZE; y++)
|
||||||
|
{
|
||||||
|
// Get height samples centered around current position
|
||||||
|
float heights[3][3];
|
||||||
|
for (auto hx = -1; hx <= 1; hx++)
|
||||||
|
{
|
||||||
|
for (auto hy = -1; hy <= 1; hy++)
|
||||||
|
{
|
||||||
|
heights[hx+1][hy+1] = heightMap.getHeight(x + hx, y + hy);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calcualte the normal
|
||||||
|
glm::vec3 normal;
|
||||||
|
// Gx sobel filter
|
||||||
|
normal.x = heights[0][0] - heights[2][0] + 2.0f * heights[0][1] - 2.0f * heights[2][1] + heights[0][2] - heights[2][2];
|
||||||
|
// Gy sobel filter
|
||||||
|
normal.z = heights[0][0] + 2.0f * heights[1][0] + heights[2][0] - heights[0][2] - 2.0f * heights[1][2] - heights[2][2];
|
||||||
|
// Calculate missing up component of the normal using the filtered x and y axis
|
||||||
|
// The first value controls the bump strength
|
||||||
|
normal.y = 0.25f * sqrt( 1.0f - normal.x * normal.x - normal.z * normal.z);
|
||||||
|
|
||||||
|
vertices[x + y * PATCH_SIZE].normal = glm::normalize(normal * glm::vec3(2.0f, 1.0f, 2.0f));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Indices
|
||||||
const uint32_t w = (PATCH_SIZE - 1);
|
const uint32_t w = (PATCH_SIZE - 1);
|
||||||
uint32_t *indices = new uint32_t[w * w * 4];
|
uint32_t *indices = new uint32_t[w * w * 4];
|
||||||
for (auto x = 0; x < w; x++)
|
for (auto x = 0; x < w; x++)
|
||||||
|
|
@ -374,7 +436,6 @@ public:
|
||||||
indices[index + 3] = indices[index] + 1;
|
indices[index + 3] = indices[index] + 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
meshes.object.indexCount = (PATCH_SIZE - 1) * (PATCH_SIZE - 1) * 4;
|
meshes.object.indexCount = (PATCH_SIZE - 1) * (PATCH_SIZE - 1) * 4;
|
||||||
|
|
||||||
uint32_t vertexBufferSize = (PATCH_SIZE * PATCH_SIZE * 4) * sizeof(Vertex);
|
uint32_t vertexBufferSize = (PATCH_SIZE * PATCH_SIZE * 4) * sizeof(Vertex);
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue