Add Order Independent Transparency example (#755)

* Add Order Independent Transparency example

* Update README.md

* Add copyright at Order Independent Transparency example

* Disable the validation by default
This commit is contained in:
daemyung jang 2020-08-21 16:27:06 +09:00 committed by GitHub
parent d6b61a0952
commit 82747df540
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 822 additions and 0 deletions

View file

@ -180,6 +180,10 @@ Generating a complete mip-chain at runtime instead of loading it from a file, by
Capturing and saving an image after a scene has been rendered using blits to copy the last swapchain image from optimal device to host local linear memory, so that it can be stored into a ppm image. Capturing and saving an image after a scene has been rendered using blits to copy the last swapchain image from optimal device to host local linear memory, so that it can be stored into a ppm image.
#### [08 - Order Independent Transparency](examples/oit)
Implements order independent transparency based on the linked list. This example use the storage buffer, the image load and store operations and atomic operations.
### <a name="Performance"></a> Performance ### <a name="Performance"></a> Performance
#### [01 - Multi threaded command buffer generation](examples/multithreading/) #### [01 - Multi threaded command buffer generation](examples/multithreading/)

View file

@ -0,0 +1,56 @@
#version 450
#define MAX_FRAGMENT_COUNT 128
struct Node
{
vec4 color;
float depth;
uint next;
};
layout (location = 0) out vec4 outFragColor;
layout (set = 0, binding = 0, r32ui) uniform uimage2D headIndexImage;
layout (set = 0, binding = 1) buffer LinkedListSBO
{
Node nodes[];
};
void main()
{
Node fragments[MAX_FRAGMENT_COUNT];
int count = 0;
uint nodeIdx = imageLoad(headIndexImage, ivec2(gl_FragCoord.xy)).r;
while (nodeIdx != 0xffffffff && count < MAX_FRAGMENT_COUNT)
{
fragments[count] = nodes[nodeIdx];
nodeIdx = fragments[count].next;
++count;
}
// Do the insertion sort
for (uint i = 1; i < count; ++i)
{
Node insert = fragments[i];
uint j = i;
while (j > 0 && insert.depth > fragments[j - 1].depth)
{
fragments[j] = fragments[j-1];
--j;
}
fragments[j] = insert;
}
// Do blending
vec4 color = vec4(0.025, 0.025, 0.025, 1.0f);
for (int i = 0; i < count; ++i)
{
color = mix(color, fragments[i].color, fragments[i].color.a);
}
outFragColor = color;
}

Binary file not shown.

View file

@ -0,0 +1,7 @@
#version 450
void main()
{
vec2 uv = vec2((gl_VertexIndex << 1) & 2, gl_VertexIndex & 2);
gl_Position = vec4(uv * 2.0f + -1.0f, 0.0f, 1.0f);
}

Binary file not shown.

View file

@ -0,0 +1,49 @@
#version 450
#define MAX_FRAGMENT_COUNT 75
layout (early_fragment_tests) in;
struct Node
{
vec4 color;
float depth;
uint next;
};
layout (set = 0, binding = 1) uniform ObjectUBO
{
mat4 model;
vec4 color;
} objectUBO;
layout (set = 0, binding = 2) buffer GeometrySBO
{
uint count;
uint maxNodeCount;
};
layout (set = 0, binding = 3, r32ui) uniform uimage2D headIndexImage;
layout (set = 0, binding = 4) buffer LinkedListSBO
{
Node nodes[];
};
void main()
{
// Increase the node count
uint nodeIdx = atomicAdd(count, 1);
// Check LinkedListSBO is full
if (nodeIdx < maxNodeCount)
{
// Exchange new head index and previous head index
uint prevHeadIdx = imageAtomicExchange(headIndexImage, ivec2(gl_FragCoord.xy), nodeIdx);
// Store node data
nodes[nodeIdx].color = objectUBO.color;
nodes[nodeIdx].depth = gl_FragCoord.z;
nodes[nodeIdx].next = prevHeadIdx;
}
}

Binary file not shown.

View file

@ -0,0 +1,21 @@
#version 450
layout (location = 0) in vec3 inPos;
layout (set = 0, binding = 0) uniform RenderPassUBO
{
mat4 projection;
mat4 view;
} renderPassUBO;
layout (set = 0, binding = 1) uniform ObjectUBO
{
mat4 model;
vec4 color;
} objectUBO;
void main()
{
mat4 PVM = renderPassUBO.projection * renderPassUBO.view * objectUBO.model;
gl_Position = PVM * vec4(inPos, 1.0);
}

Binary file not shown.

View file

@ -87,6 +87,7 @@ set(EXAMPLES
negativeviewportheight negativeviewportheight
occlusionquery occlusionquery
offscreen offscreen
oit
parallaxmapping parallaxmapping
particlefire particlefire
pbrbasic pbrbasic

684
examples/oit/oit.cpp Normal file
View file

@ -0,0 +1,684 @@
/*
* Vulkan Example - Order Independent Transparency rendering
*
* Note: Requires the separate asset pack (see data/README.md)
*
* Copyright by Sascha Willems - www.saschawillems.de
* Copyright by Daemyung Jang - dm86.jang@gmail.com
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
#define SPHERE_COUNT 5 * 5 * 5
#define CUBE_COUNT 2
#define NODE_COUNT 20
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vkglTF::Model sphere;
vkglTF::Model cube;
} models;
struct {
vks::Buffer renderPass;
vks::Buffer objects;
} uniformBuffers;
struct Node {
glm::vec4 color;
float depth;
uint32_t next;
};
struct {
uint32_t count;
uint32_t maxNodeCount;
} geometrySBO;
struct GeometryPass {
VkRenderPass renderPass;
VkFramebuffer framebuffer;
vks::Buffer geometry;
vks::Texture headIndex;
vks::Buffer linkedList;
} geometryPass;
struct {
glm::mat4 projection;
glm::mat4 view;
} renderPassUBO;
struct {
glm::mat4 model;
glm::vec4 color;
} objectUBO;
struct {
VkDescriptorSetLayout geometry;
VkDescriptorSetLayout color;
} descriptorSetLayouts;
struct {
VkPipelineLayout geometry;
VkPipelineLayout color;
} pipelineLayouts;
struct {
VkPipeline geometry;
VkPipeline color;
} pipelines;
struct {
VkDescriptorSet geometry;
VkDescriptorSet color;
} descriptorSets;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Order independent transparency rendering";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -6.0f));
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setPerspective(60.0f, (float) width / (float) height, 0.1f, 256.0f);
settings.validation = ENABLE_VALIDATION;
settings.overlay = true;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.geometry, nullptr);
vkDestroyPipeline(device, pipelines.color, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.geometry, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.color, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.geometry, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.color, nullptr);
destroyGeometryPass();
uniformBuffers.renderPass.destroy();
uniformBuffers.objects.destroy();
}
void getEnabledFeatures() override
{
if (deviceFeatures.fragmentStoresAndAtomics)
enabledFeatures.fragmentStoresAndAtomics = VK_TRUE;
};
void prepare() override
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
prepareGeometryPass();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
updateUniformBuffers();
prepared = true;
}
void render() override
{
if (!prepared)
return;
draw();
}
void windowResized() override
{
destroyGeometryPass();
prepareGeometryPass();
vkResetDescriptorPool(device, descriptorPool, 0);
setupDescriptorSets();
resized = false;
buildCommandBuffers();
}
void viewChanged() override
{
updateUniformBuffers();
}
private:
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY;
models.sphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.cube.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void prepareUniformBuffers()
{
// Create an uniform buffer for a render pass.
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.renderPass,
sizeof(renderPassUBO)));
VK_CHECK_RESULT(uniformBuffers.renderPass.map());
// This example has many object and the information of objects will be stored in one buffer.
// This buffer will be used for the uniform buffer dynamic.
// So we need to calculate a object uniform buffer size based on minUniformBufferOffsetAlignment.
objectUniformBufferSize =
(sizeof(objectUBO) + deviceProperties.limits.minUniformBufferOffsetAlignment) & ~(deviceProperties.limits.minUniformBufferOffsetAlignment - 1);
// Create an uniform buffer for objects.
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.objects,
objectUniformBufferSize * (SPHERE_COUNT + CUBE_COUNT)));
VK_CHECK_RESULT(uniformBuffers.objects.map());
// Set up the scene.
uint8_t* objectUniformBufferData = static_cast<uint8_t*>(uniformBuffers.objects.mapped);
assert(SPHERE_COUNT == 5 * 5 * 5);
for (int i = 0; i != 5; i++)
{
for (int j = 0; j != 5; j++)
{
for (int k = 0; k != 5; k++)
{
auto T = glm::translate(glm::mat4(1.0f), glm::vec3(i - 2, j - 2, k - 2));
auto S = glm::scale(glm::mat4(1.0f), glm::vec3(0.3f));
objectUBO.model = T * S;
objectUBO.color = glm::vec4(1.0f, 0.0f, 0.0f, 0.5f);
memcpy(objectUniformBufferData, &objectUBO, sizeof(objectUBO));
objectUniformBufferData += objectUniformBufferSize;
}
}
}
for (auto i = 0; i != CUBE_COUNT; ++i)
{
auto T = glm::translate(glm::mat4(1.0f), glm::vec3(3.0f * i - 1.5f, 0.0f, 0.0f));
auto S = glm::scale(glm::mat4(1.0f), glm::vec3(0.2f));
objectUBO.model = T * S;
objectUBO.color = glm::vec4(0.0f, 0.0f, 1.0f, 0.5f);
memcpy(objectUniformBufferData, &objectUBO, sizeof(objectUBO));
objectUniformBufferData += objectUniformBufferSize;
}
}
void prepareGeometryPass()
{
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
// Geometry render pass doesn't need any output attachment.
auto renderPassInfo = vks::initializers::renderPassCreateInfo();
renderPassInfo.attachmentCount = 0;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpassDescription;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &geometryPass.renderPass));
// Geometry framebuffer doesn't need any output attachment.
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = geometryPass.renderPass;
fbufCreateInfo.attachmentCount = 0;
fbufCreateInfo.width = width;
fbufCreateInfo.height = height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &geometryPass.framebuffer));
// Create a buffer for GeometrySBO
// Using the device memory will be best but I will use the host visible buffer to make this example simple.
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&geometryPass.geometry,
sizeof(geometrySBO)));
VK_CHECK_RESULT(geometryPass.geometry.map());
// Set up GeometrySBO data.
geometrySBO.count = 0;
geometrySBO.maxNodeCount = NODE_COUNT * width * height;
memcpy(geometryPass.geometry.mapped, &geometrySBO, sizeof(geometrySBO));
// Create a texture for HeadIndex.
// This image will track the head index of each fragment.
geometryPass.headIndex.device = vulkanDevice;
VkImageCreateInfo imageInfo = vks::initializers::imageCreateInfo();
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.format = VK_FORMAT_R32_UINT;
imageInfo.extent.width = width;
imageInfo.extent.height = height;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = 1;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageInfo, nullptr, &geometryPass.headIndex.image));
geometryPass.headIndex.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, geometryPass.headIndex.image, &memReqs);
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &geometryPass.headIndex.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, geometryPass.headIndex.image, geometryPass.headIndex.deviceMemory, 0));
VkImageViewCreateInfo imageViewInfo = vks::initializers::imageViewCreateInfo();
imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageViewInfo.format = VK_FORMAT_R32_UINT;
imageViewInfo.flags = 0;
imageViewInfo.image = geometryPass.headIndex.image;
imageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageViewInfo.subresourceRange.baseMipLevel = 0;
imageViewInfo.subresourceRange.levelCount = 1;
imageViewInfo.subresourceRange.baseArrayLayer = 0;
imageViewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &imageViewInfo, nullptr, &geometryPass.headIndex.view));
geometryPass.headIndex.width = width;
geometryPass.headIndex.height = height;
geometryPass.headIndex.mipLevels = 1;
geometryPass.headIndex.layerCount = 1;
geometryPass.headIndex.descriptor.imageView = geometryPass.headIndex.view;
geometryPass.headIndex.descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
geometryPass.headIndex.sampler = VK_NULL_HANDLE;
// Create a buffer for LinkedListSBO
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&geometryPass.linkedList,
sizeof(Node) * geometrySBO.maxNodeCount));
VK_CHECK_RESULT(geometryPass.linkedList.map());
// Change HeadInex image's layout from UNDEFINED to GENERAL
auto cmdBufAllocInfo = vks::initializers::commandBufferAllocateInfo(cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1);
VkCommandBuffer cmdBuf;
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocInfo, &cmdBuf));
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuf, &cmdBufInfo));
auto barrier = vks::initializers::imageMemoryBarrier();
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
barrier.image = geometryPass.headIndex.image;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuf));
auto submitInfo = vks::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuf;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
}
void setupDescriptorSetLayout()
{
// Create a geometry descriptor set layout.
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// RenderPassUBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
0),
// ObjectUBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// AtomicSBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// headIndexImage
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
// LinkedListSBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
4),
};
auto descriptorLayoutCreateInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCreateInfo, nullptr, &descriptorSetLayouts.geometry));
// Create a geometry pipeline layout.
auto pipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.geometry, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.geometry));
// Create a color descriptor set layout.
setLayoutBindings = {
// headIndexImage
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_SHADER_STAGE_FRAGMENT_BIT,
0),
// LinkedListSBO
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
descriptorLayoutCreateInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCreateInfo, nullptr, &descriptorSetLayouts.color));
// Create a color pipeline layout.
pipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.color, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.color));
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(0, nullptr);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// Create a geometry pipeline.
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.geometry, geometryPass.renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position });
shaderStages[0] = loadShader(getShadersPath() + "oit/geometry.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "oit/geometry.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.geometry));
// Create a color pipeline.
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.color, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = &vertexInputInfo;
shaderStages[0] = loadShader(getShadersPath() + "oit/color.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "oit/color.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.color));
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSets()
{
// Update a geometry descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.geometry,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.geometry));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: RenderPassUBO
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.renderPass.descriptor),
// Binding 1: ObjectUBO
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
1,
&uniformBuffers.objects.descriptor),
// Binding 2: GeometrySBO
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
2,
&geometryPass.geometry.descriptor),
// Binding 3: headIndexImage
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
3,
&geometryPass.headIndex.descriptor),
// Binding 4: LinkedListSBO
vks::initializers::writeDescriptorSet(
descriptorSets.geometry,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
4,
&geometryPass.linkedList.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Update a color descriptor set.
allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.color,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.color));
writeDescriptorSets = {
// Binding 0: headIndexImage
vks::initializers::writeDescriptorSet(
descriptorSets.color,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
0,
&geometryPass.headIndex.descriptor),
// Binding 1: LinkedListSBO
vks::initializers::writeDescriptorSet(
descriptorSets.color,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
&geometryPass.linkedList.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void buildCommandBuffers()
{
if (resized)
return;
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Update dynamic viewport state
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
// Update dynamic scissor state
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkClearColorValue clearColor;
clearColor.uint32[0] = 0xffffffff;
VkImageSubresourceRange subresRange = {};
subresRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresRange.levelCount = 1;
subresRange.layerCount = 1;
vkCmdClearColorImage(drawCmdBuffers[i], geometryPass.headIndex.image, VK_IMAGE_LAYOUT_GENERAL, &clearColor, 1, &subresRange);
// Begin the geometry render pass
renderPassBeginInfo.renderPass = geometryPass.renderPass;
renderPassBeginInfo.framebuffer = geometryPass.framebuffer;
renderPassBeginInfo.clearValueCount = 0;
renderPassBeginInfo.pClearValues = nullptr;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.geometry);
uint32_t dynamicOffset = 0;
models.sphere.bindBuffers(drawCmdBuffers[i]);
for (auto j = 0; j != SPHERE_COUNT; ++j)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.geometry, 0, 1, &descriptorSets.geometry, 1, &dynamicOffset);
models.sphere.draw(drawCmdBuffers[i]);
dynamicOffset += objectUniformBufferSize;
}
models.cube.bindBuffers(drawCmdBuffers[i]);
for (auto j = 0; j != CUBE_COUNT; ++j)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.geometry, 0, 1, &descriptorSets.geometry, 1, &dynamicOffset);
models.cube.draw(drawCmdBuffers[i]);
dynamicOffset += objectUniformBufferSize;
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
// Make a pipeline barrier to guarantee the geometry pass is done
vkCmdPipelineBarrier(drawCmdBuffers[i], VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 0, nullptr);
// Begin the color render pass
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.color);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.color, 0, 1, &descriptorSets.color, 0, nullptr);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void updateUniformBuffers()
{
renderPassUBO.projection = camera.matrices.perspective;
renderPassUBO.view = camera.matrices.view;
memcpy(uniformBuffers.renderPass.mapped, &renderPassUBO, sizeof(renderPassUBO));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Clear previous geometry pass data
memset(geometryPass.geometry.mapped, 0, sizeof(uint32_t));
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void destroyGeometryPass()
{
vkDestroyRenderPass(device, geometryPass.renderPass, nullptr);
vkDestroyFramebuffer(device, geometryPass.framebuffer, nullptr);
geometryPass.geometry.destroy();
geometryPass.headIndex.destroy();
geometryPass.linkedList.destroy();
}
private:
VkDeviceSize objectUniformBufferSize;
};
VULKAN_EXAMPLE_MAIN()