Add new sample for buffer device address (#1144)

* Started work on buffer device address sample

* Code cleanup

* Added BDA sample to readm

* Added android build files for BDA sample

* Replaces all uniform buffers with references
Comments and code cleanup
This commit is contained in:
Sascha Willems 2024-07-03 22:04:57 +02:00 committed by GitHub
parent c598b1e7ab
commit 8b4ee59033
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 580 additions and 0 deletions

View file

@ -0,0 +1,324 @@
/*
* Vulkan Example - Buffer device address
*
* This sample shows how to read data from a buffer device address (aka "reference") instead of using uniforms
* The application passes buffer device addresses to the shader via push constants, and the shader then simply reads the data behind that address
* See cube.vert for the shader side of things
*
* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de
*
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
bool animate = true;
struct Cube {
glm::mat4 modelMatrix;
vks::Buffer buffer;
glm::vec3 rotation;
VkDeviceAddress bufferDeviceAddress{};
};
std::array<Cube, 2> cubes{};
vks::Texture2D texture;
vkglTF::Model model;
// Global matrices
struct Scene {
glm::mat4 mvp;
vks::Buffer buffer;
VkDeviceAddress bufferDeviceAddress{};
} scene;
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR{ VK_NULL_HANDLE };
VkPhysicalDeviceBufferDeviceAddressFeatures enabledBufferDeviceAddresFeatures{};
// This sample passes the buffer references ("pointer") using push constants, the shader then reads data from that buffer address
struct PushConstantBlock {
// Reference to the global matrices
VkDeviceAddress sceneReference;
// Reference to the per model matrices
VkDeviceAddress modelReference;
};
VulkanExample() : VulkanExampleBase()
{
title = "Buffer device address";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledInstanceExtensions.push_back(VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEVICE_GROUP_EXTENSION_NAME);
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
deviceCreatepNextChain = &enabledBufferDeviceAddresFeatures;
}
~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
texture.destroy();
for (auto cube : cubes) {
cube.buffer.destroy();
}
scene.buffer.destroy();
}
}
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
model.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
// We pass all data via buffer device addresses, so we only allocate descriptors for the images
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> descriptorPoolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(descriptorPoolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &texture.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// The buffer addresses will be passed to the shader using push constants
// That way it's very easy to do a draw call, change the reference to another buffer (or part of that buffer) and do the next draw call using different data
VkPushConstantRange pushConstantRange{};
pushConstantRange.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
pushConstantRange.offset = 0;
pushConstantRange.size = sizeof(PushConstantBlock);
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo();
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getShadersPath() + "bufferdeviceaddress/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getShadersPath() + "bufferdeviceaddress/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color });
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
void prepareBuffers()
{
// Note that we don't use this buffer for uniforms but rather pass it's address as a reference to the shader, so isntead of the uniform buffer usage we use a different flag
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &scene.buffer, sizeof(glm::mat4)));
VK_CHECK_RESULT(scene.buffer.map());
// Get the device of this buffer that is later on passed to the shader (aka "reference")
VkBufferDeviceAddressInfo bufferDeviceAdressInfo{};
bufferDeviceAdressInfo.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO;
bufferDeviceAdressInfo.buffer = scene.buffer.buffer;
scene.bufferDeviceAddress = vkGetBufferDeviceAddressKHR(device, &bufferDeviceAdressInfo);
for (auto& cube : cubes) {
// Note that we don't use this buffer for uniforms but rather pass it's address as a reference to the shader, so isntead of the uniform buffer usage we use a different flag
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &cube.buffer, sizeof(glm::mat4)));
VK_CHECK_RESULT(cube.buffer.map());
// Get the device of this buffer that is later on passed to the shader (aka "reference")
bufferDeviceAdressInfo.buffer = cube.buffer.buffer;
cube.bufferDeviceAddress = vkGetBufferDeviceAddressKHR(device, &bufferDeviceAdressInfo);
}
updateBuffers();
}
void updateBuffers()
{
scene.mvp = camera.matrices.perspective * camera.matrices.view;
memcpy(scene.buffer.mapped, &scene, sizeof(glm::mat4));
cubes[0].modelMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
cubes[1].modelMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(1.5f, 0.5f, 0.0f));
for (auto& cube : cubes) {
cube.modelMatrix = glm::rotate(cube.modelMatrix, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
cube.modelMatrix = glm::rotate(cube.modelMatrix, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
cube.modelMatrix = glm::rotate(cube.modelMatrix, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
cube.modelMatrix = glm::scale(cube.modelMatrix, glm::vec3(0.25f));
memcpy(cube.buffer.mapped, &cube.modelMatrix, sizeof(glm::mat4));
}
}
void prepare()
{
VulkanExampleBase::prepare();
// We need this extension function to get the address of a buffer so we can pass it to the shader
vkGetBufferDeviceAddressKHR = reinterpret_cast<PFN_vkGetBufferDeviceAddressKHR>(vkGetDeviceProcAddr(device, "vkGetBufferDeviceAddressKHR"));
loadAssets();
prepareBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
model.bindBuffers(drawCmdBuffers[i]);
// Instead of using descriptors to pass global and per-model matrices to the shader, we can now simply pass buffer references via push constants
// The reader then simply reads data from the address of that reference
PushConstantBlock references{};
// Pass pointer to the global matrix via a buffer device address
references.sceneReference = scene.bufferDeviceAddress;
for (auto& cube : cubes) {
// Pass pointer to this cube's data buffer via a buffer device address
// So instead of having to bind different descriptors, we only pass a different device address
// This doesn't have to be an address from a different buffer, but could very well be just another address in the same buffer
references.modelReference = cube.bufferDeviceAddress;
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(PushConstantBlock), &references);
model.draw(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
draw();
if (animate && !paused) {
cubes[0].rotation.x += 2.5f * frameTimer;
if (cubes[0].rotation.x > 360.0f)
cubes[0].rotation.x -= 360.0f;
cubes[1].rotation.y += 2.0f * frameTimer;
if (cubes[1].rotation.x > 360.0f)
cubes[1].rotation.x -= 360.0f;
}
if ((camera.updated) || (animate && !paused)) {
updateBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Animate", &animate);
}
}
};
VULKAN_EXAMPLE_MAIN()