Add new sample for timeline semaphores (#1145)
* Started work on a timeline semaphore sample * Properly increas timeline semaphore value * Added timeline semaphore sample to readm * Code cleanup, comments * Removed toto * Added android build files for timeline semaphore sample
This commit is contained in:
parent
8b4ee59033
commit
8cb518ba54
7 changed files with 867 additions and 0 deletions
|
|
@ -170,6 +170,7 @@ set(EXAMPLES
|
|||
texturecubemaparray
|
||||
texturemipmapgen
|
||||
texturesparseresidency
|
||||
timelinesemaphore
|
||||
triangle
|
||||
variablerateshading
|
||||
vertexattributes
|
||||
|
|
|
|||
674
examples/timelinesemaphore/timelinesemaphore.cpp
Normal file
674
examples/timelinesemaphore/timelinesemaphore.cpp
Normal file
|
|
@ -0,0 +1,674 @@
|
|||
/*
|
||||
* Vulkan Example - Using timeline semaphores
|
||||
*
|
||||
* Based on the compute n-nbody sample, this sample replaces multiple semaphores with a single timeline semaphore
|
||||
*
|
||||
* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include "vulkanexamplebase.h"
|
||||
|
||||
#if defined(__ANDROID__)
|
||||
// Lower particle count on Android for performance reasons
|
||||
#define PARTICLES_PER_ATTRACTOR 3 * 1024
|
||||
#else
|
||||
#define PARTICLES_PER_ATTRACTOR 4 * 1024
|
||||
#endif
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
struct Textures {
|
||||
vks::Texture2D particle;
|
||||
vks::Texture2D gradient;
|
||||
} textures{};
|
||||
|
||||
// Particle Definition
|
||||
struct Particle {
|
||||
glm::vec4 pos;
|
||||
glm::vec4 vel;
|
||||
};
|
||||
uint32_t numParticles{ 0 };
|
||||
vks::Buffer storageBuffer;
|
||||
|
||||
// Resources for the graphics part of the example
|
||||
struct Graphics {
|
||||
uint32_t queueFamilyIndex;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
VkDescriptorSet descriptorSet;
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkPipeline pipeline;
|
||||
struct UniformData {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 view;
|
||||
glm::vec2 screenDim;
|
||||
} uniformData;
|
||||
vks::Buffer uniformBuffer;
|
||||
} graphics{};
|
||||
|
||||
// Resources for the compute part of the example
|
||||
struct Compute {
|
||||
uint32_t queueFamilyIndex;
|
||||
VkQueue queue;
|
||||
VkCommandPool commandPool;
|
||||
VkCommandBuffer commandBuffer;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
VkDescriptorSet descriptorSet;
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkPipeline pipelineCalculate;
|
||||
VkPipeline pipelineIntegrate;
|
||||
struct UniformData {
|
||||
float deltaT{ 0.0f };
|
||||
int32_t particleCount{ 0 };
|
||||
float gravity{ 0.002f };
|
||||
float power{ 0.75f };
|
||||
float soften{ 0.05f };
|
||||
} uniformData;
|
||||
vks::Buffer uniformBuffer;
|
||||
} compute{};
|
||||
|
||||
// Along with the actual semaphore we also need to track the increasing value of the timeline,
|
||||
// so we store both in a single struct
|
||||
struct TimeLineSemaphore {
|
||||
VkSemaphore handle{ VK_NULL_HANDLE };
|
||||
uint64_t value{ 0 };
|
||||
} timeLineSemaphore;
|
||||
|
||||
VkPhysicalDeviceTimelineSemaphoreFeaturesKHR enabledTimelineSemaphoreFeaturesKHR{};
|
||||
|
||||
VulkanExample() : VulkanExampleBase()
|
||||
{
|
||||
title = "Timeline semaphores";
|
||||
camera.type = Camera::CameraType::lookat;
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
||||
camera.setRotation(glm::vec3(-26.0f, 75.0f, 0.0f));
|
||||
camera.setTranslation(glm::vec3(0.0f, 0.0f, -14.0f));
|
||||
camera.movementSpeed = 2.5f;
|
||||
|
||||
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_KHR_TIMELINE_SEMAPHORE_EXTENSION_NAME);
|
||||
|
||||
enabledTimelineSemaphoreFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR;
|
||||
enabledTimelineSemaphoreFeaturesKHR.timelineSemaphore = VK_TRUE;
|
||||
|
||||
deviceCreatepNextChain = &enabledTimelineSemaphoreFeaturesKHR;
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
if (device) {
|
||||
vkDestroySemaphore(device, timeLineSemaphore.handle, nullptr);
|
||||
|
||||
// Graphics
|
||||
graphics.uniformBuffer.destroy();
|
||||
vkDestroyPipeline(device, graphics.pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
|
||||
|
||||
// Compute
|
||||
compute.uniformBuffer.destroy();
|
||||
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
||||
vkDestroyPipeline(device, compute.pipelineCalculate, nullptr);
|
||||
vkDestroyPipeline(device, compute.pipelineIntegrate, nullptr);
|
||||
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
||||
|
||||
storageBuffer.destroy();
|
||||
|
||||
textures.particle.destroy();
|
||||
textures.gradient.destroy();
|
||||
}
|
||||
}
|
||||
|
||||
void loadAssets()
|
||||
{
|
||||
textures.particle.loadFromFile(getAssetPath() + "textures/particle01_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
||||
textures.gradient.loadFromFile(getAssetPath() + "textures/particle_gradient_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = { {0.0f, 0.0f, 0.0f, 1.0f} };
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
// Set target frame buffer
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
// Acquire barrier
|
||||
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
||||
{
|
||||
VkBufferMemoryBarrier buffer_barrier =
|
||||
{
|
||||
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
||||
nullptr,
|
||||
0,
|
||||
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
|
||||
compute.queueFamilyIndex,
|
||||
graphics.queueFamilyIndex,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
drawCmdBuffers[i],
|
||||
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
||||
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
||||
0,
|
||||
0, nullptr,
|
||||
1, &buffer_barrier,
|
||||
0, nullptr);
|
||||
}
|
||||
|
||||
// Draw the particle system using the update vertex buffer
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, nullptr);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &storageBuffer.buffer, offsets);
|
||||
vkCmdDraw(drawCmdBuffers[i], numParticles, 1, 0, 0);
|
||||
|
||||
drawUI(drawCmdBuffers[i]);
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
// Release barrier
|
||||
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
||||
{
|
||||
VkBufferMemoryBarrier buffer_barrier =
|
||||
{
|
||||
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
||||
nullptr,
|
||||
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
|
||||
0,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.queueFamilyIndex,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
drawCmdBuffers[i],
|
||||
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
||||
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
||||
0,
|
||||
0, nullptr,
|
||||
1, &buffer_barrier,
|
||||
0, nullptr);
|
||||
}
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void buildComputeCommandBuffer()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
|
||||
|
||||
// Acquire barrier
|
||||
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
||||
{
|
||||
VkBufferMemoryBarrier buffer_barrier =
|
||||
{
|
||||
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
||||
nullptr,
|
||||
0,
|
||||
VK_ACCESS_SHADER_WRITE_BIT,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.queueFamilyIndex,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
compute.commandBuffer,
|
||||
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
||||
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
||||
0,
|
||||
0, nullptr,
|
||||
1, &buffer_barrier,
|
||||
0, nullptr);
|
||||
}
|
||||
|
||||
// First pass: Calculate particle movement
|
||||
// -------------------------------------------------------------------------------------------------------
|
||||
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineCalculate);
|
||||
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
|
||||
vkCmdDispatch(compute.commandBuffer, numParticles / 256, 1, 1);
|
||||
|
||||
// Add memory barrier to ensure that the computer shader has finished writing to the buffer
|
||||
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
|
||||
bufferBarrier.buffer = storageBuffer.buffer;
|
||||
bufferBarrier.size = storageBuffer.descriptor.range;
|
||||
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
||||
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
||||
// Transfer ownership if compute and graphics queue family indices differ
|
||||
bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
||||
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
compute.commandBuffer,
|
||||
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
||||
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
||||
VK_FLAGS_NONE,
|
||||
0, nullptr,
|
||||
1, &bufferBarrier,
|
||||
0, nullptr);
|
||||
|
||||
// Second pass: Integrate particles
|
||||
// -------------------------------------------------------------------------------------------------------
|
||||
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineIntegrate);
|
||||
vkCmdDispatch(compute.commandBuffer, numParticles / 256, 1, 1);
|
||||
|
||||
// Release barrier
|
||||
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
||||
{
|
||||
VkBufferMemoryBarrier buffer_barrier =
|
||||
{
|
||||
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
||||
nullptr,
|
||||
VK_ACCESS_SHADER_WRITE_BIT,
|
||||
0,
|
||||
compute.queueFamilyIndex,
|
||||
graphics.queueFamilyIndex,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
compute.commandBuffer,
|
||||
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
||||
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
||||
0,
|
||||
0, nullptr,
|
||||
1, &buffer_barrier,
|
||||
0, nullptr);
|
||||
}
|
||||
|
||||
vkEndCommandBuffer(compute.commandBuffer);
|
||||
}
|
||||
|
||||
// Setup and fill the compute shader storage buffers containing the particles
|
||||
void prepareStorageBuffers()
|
||||
{
|
||||
// We mark a few particles as attractors that move along a given path, these will pull in the other particles
|
||||
std::vector<glm::vec3> attractors = {
|
||||
glm::vec3(5.0f, 0.0f, 0.0f),
|
||||
glm::vec3(-5.0f, 0.0f, 0.0f),
|
||||
glm::vec3(0.0f, 0.0f, 5.0f),
|
||||
glm::vec3(0.0f, 0.0f, -5.0f),
|
||||
glm::vec3(0.0f, 4.0f, 0.0f),
|
||||
glm::vec3(0.0f, -8.0f, 0.0f),
|
||||
};
|
||||
|
||||
numParticles = static_cast<uint32_t>(attractors.size()) * PARTICLES_PER_ATTRACTOR;
|
||||
|
||||
// Initial particle positions
|
||||
std::vector<Particle> particleBuffer(numParticles);
|
||||
|
||||
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
|
||||
std::normal_distribution<float> rndDist(0.0f, 1.0f);
|
||||
|
||||
for (uint32_t i = 0; i < static_cast<uint32_t>(attractors.size()); i++)
|
||||
{
|
||||
for (uint32_t j = 0; j < PARTICLES_PER_ATTRACTOR; j++)
|
||||
{
|
||||
Particle& particle = particleBuffer[i * PARTICLES_PER_ATTRACTOR + j];
|
||||
|
||||
// First particle in group as heavy center of gravity
|
||||
if (j == 0)
|
||||
{
|
||||
particle.pos = glm::vec4(attractors[i] * 1.5f, 90000.0f);
|
||||
particle.vel = glm::vec4(glm::vec4(0.0f));
|
||||
}
|
||||
else
|
||||
{
|
||||
// Position
|
||||
glm::vec3 position(attractors[i] + glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine)) * 0.75f);
|
||||
float len = glm::length(glm::normalize(position - attractors[i]));
|
||||
position.y *= 2.0f - (len * len);
|
||||
|
||||
// Velocity
|
||||
glm::vec3 angular = glm::vec3(0.5f, 1.5f, 0.5f) * (((i % 2) == 0) ? 1.0f : -1.0f);
|
||||
glm::vec3 velocity = glm::cross((position - attractors[i]), angular) + glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine) * 0.025f);
|
||||
|
||||
float mass = (rndDist(rndEngine) * 0.5f + 0.5f) * 75.0f;
|
||||
particle.pos = glm::vec4(position, mass);
|
||||
particle.vel = glm::vec4(velocity, 0.0f);
|
||||
}
|
||||
|
||||
// Color gradient offset
|
||||
particle.vel.w = (float)i * 1.0f / static_cast<uint32_t>(attractors.size());
|
||||
}
|
||||
}
|
||||
|
||||
compute.uniformData.particleCount = numParticles;
|
||||
|
||||
VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle);
|
||||
|
||||
// Staging
|
||||
vks::Buffer stagingBuffer;
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, particleBuffer.data());
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &storageBuffer, storageBufferSize);
|
||||
|
||||
// Copy from staging buffer to storage buffer
|
||||
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
VkBufferCopy copyRegion = {};
|
||||
copyRegion.size = storageBufferSize;
|
||||
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, storageBuffer.buffer, 1, ©Region);
|
||||
// Execute a transfer barrier to the compute queue, if necessary
|
||||
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
||||
{
|
||||
VkBufferMemoryBarrier buffer_barrier =
|
||||
{
|
||||
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
||||
nullptr,
|
||||
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
|
||||
0,
|
||||
graphics.queueFamilyIndex,
|
||||
compute.queueFamilyIndex,
|
||||
storageBuffer.buffer,
|
||||
0,
|
||||
storageBuffer.size
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier(
|
||||
copyCmd,
|
||||
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
||||
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
||||
0,
|
||||
0, nullptr,
|
||||
1, &buffer_barrier,
|
||||
0, nullptr);
|
||||
}
|
||||
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
||||
|
||||
stagingBuffer.destroy();
|
||||
}
|
||||
|
||||
void prepareGraphics()
|
||||
{
|
||||
// Vertex shader uniform buffer block
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(Graphics::UniformData));
|
||||
VK_CHECK_RESULT(graphics.uniformBuffer.map());
|
||||
|
||||
// Descriptor pool
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1),
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
|
||||
};
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||
|
||||
// Descriptor layout
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
||||
setLayoutBindings = {
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 2),
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
|
||||
|
||||
// Descriptor set
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &textures.particle.descriptor),
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.gradient.descriptor),
|
||||
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &graphics.uniformBuffer.descriptor),
|
||||
};
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
||||
|
||||
// Pipeline layout
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
|
||||
|
||||
// Pipeline
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_ALWAYS);
|
||||
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
||||
|
||||
// Vertex Input state
|
||||
std::vector<VkVertexInputBindingDescription> inputBindings = {
|
||||
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX)
|
||||
};
|
||||
std::vector<VkVertexInputAttributeDescription> inputAttributes = {
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)),
|
||||
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, vel)),
|
||||
};
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(inputBindings.size());
|
||||
vertexInputState.pVertexBindingDescriptions = inputBindings.data();
|
||||
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
|
||||
vertexInputState.pVertexAttributeDescriptions = inputAttributes.data();
|
||||
|
||||
// Shaders
|
||||
shaderStages[0] = loadShader(getShadersPath() + "computenbody/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getShadersPath() + "computenbody/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass, 0);
|
||||
pipelineCreateInfo.pVertexInputState = &vertexInputState;
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
||||
pipelineCreateInfo.pViewportState = &viewportState;
|
||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
||||
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCreateInfo.pStages = shaderStages.data();
|
||||
pipelineCreateInfo.renderPass = renderPass;
|
||||
|
||||
// Additive blending
|
||||
blendAttachmentState.colorWriteMask = 0xF;
|
||||
blendAttachmentState.blendEnable = VK_TRUE;
|
||||
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
|
||||
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
||||
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
||||
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
|
||||
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
|
||||
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
|
||||
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
|
||||
|
||||
buildCommandBuffers();
|
||||
}
|
||||
|
||||
void prepareCompute()
|
||||
{
|
||||
vkGetDeviceQueue(device, compute.queueFamilyIndex, 0, &compute.queue);
|
||||
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformData));
|
||||
VK_CHECK_RESULT(compute.uniformBuffer.map());
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0 : Particle position storage buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0),
|
||||
// Binding 1 : Uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
|
||||
};
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
|
||||
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
|
||||
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffer.descriptor),
|
||||
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,1,&compute.uniformBuffer.descriptor)
|
||||
};
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, nullptr);
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
||||
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
|
||||
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computenbody/particle_calculate.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
||||
uint32_t sharedDataSize = std::min((uint32_t)1024, (uint32_t)(vulkanDevice->properties.limits.maxComputeSharedMemorySize / sizeof(glm::vec4)));
|
||||
VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
|
||||
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(int32_t), &sharedDataSize);
|
||||
computePipelineCreateInfo.stage.pSpecializationInfo = &specializationInfo;
|
||||
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipelineCalculate));
|
||||
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computenbody/particle_integrate.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
||||
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipelineIntegrate));
|
||||
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
||||
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
||||
cmdPoolInfo.queueFamilyIndex = compute.queueFamilyIndex;
|
||||
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
||||
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
|
||||
compute.commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, compute.commandPool);
|
||||
buildComputeCommandBuffer();
|
||||
}
|
||||
|
||||
void updateComputeUniformBuffers()
|
||||
{
|
||||
compute.uniformData.deltaT = paused ? 0.0f : frameTimer * 0.05f;
|
||||
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformData));
|
||||
}
|
||||
|
||||
void updateGraphicsUniformBuffers()
|
||||
{
|
||||
graphics.uniformData.projection = camera.matrices.perspective;
|
||||
graphics.uniformData.view = camera.matrices.view;
|
||||
graphics.uniformData.screenDim = glm::vec2((float)width, (float)height);
|
||||
memcpy(graphics.uniformBuffer.mapped, &graphics.uniformData, sizeof(Graphics::UniformData));
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
graphics.queueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
||||
compute.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
||||
|
||||
// Setup the timeline semaphore
|
||||
VkSemaphoreCreateInfo semaphoreCI{};
|
||||
semaphoreCI.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
||||
// It's a variation of the core semaphore type, creation is handled via an extension struture
|
||||
VkSemaphoreTypeCreateInfoKHR semaphoreTypeCI{};
|
||||
semaphoreTypeCI.sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO_KHR;
|
||||
semaphoreTypeCI.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE_KHR;
|
||||
semaphoreTypeCI.initialValue = timeLineSemaphore.value;
|
||||
|
||||
semaphoreCI.pNext = &semaphoreTypeCI;
|
||||
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &timeLineSemaphore.handle));
|
||||
|
||||
loadAssets();
|
||||
prepareStorageBuffers();
|
||||
prepareGraphics();
|
||||
prepareCompute();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
// Wait for rendering finished
|
||||
VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
|
||||
|
||||
// Submit compute commands
|
||||
|
||||
// Define incremental timeline sempahore states
|
||||
const uint64_t graphics_finished = timeLineSemaphore.value;
|
||||
const uint64_t compute_finished = timeLineSemaphore.value + 1;
|
||||
const uint64_t all_finished = timeLineSemaphore.value + 2;
|
||||
|
||||
// With timeline semaphores, we can state on what value we want to wait on / signal on
|
||||
VkTimelineSemaphoreSubmitInfoKHR timeLineSubmitInfo{ VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR };
|
||||
timeLineSubmitInfo.waitSemaphoreValueCount = 1;
|
||||
timeLineSubmitInfo.pWaitSemaphoreValues = &graphics_finished;
|
||||
timeLineSubmitInfo.signalSemaphoreValueCount = 1;
|
||||
timeLineSubmitInfo.pSignalSemaphoreValues = &compute_finished;
|
||||
|
||||
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
|
||||
computeSubmitInfo.commandBufferCount = 1;
|
||||
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
|
||||
computeSubmitInfo.waitSemaphoreCount = 1;
|
||||
computeSubmitInfo.pWaitSemaphores = &timeLineSemaphore.handle;
|
||||
computeSubmitInfo.pWaitDstStageMask = &waitStageMask;
|
||||
computeSubmitInfo.signalSemaphoreCount = 1;
|
||||
computeSubmitInfo.pSignalSemaphores = &timeLineSemaphore.handle;
|
||||
|
||||
computeSubmitInfo.pNext = &timeLineSubmitInfo;
|
||||
|
||||
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
|
||||
|
||||
VulkanExampleBase::prepareFrame();
|
||||
|
||||
VkPipelineStageFlags graphicsWaitStageMasks[] = { VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
|
||||
VkSemaphore graphicsWaitSemaphores[] = { timeLineSemaphore.handle, semaphores.presentComplete };
|
||||
VkSemaphore graphicsSignalSemaphores[] = { timeLineSemaphore.handle, semaphores.renderComplete };
|
||||
|
||||
// Submit graphics commands
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
submitInfo.waitSemaphoreCount = 2;
|
||||
submitInfo.pWaitSemaphores = graphicsWaitSemaphores;
|
||||
submitInfo.pWaitDstStageMask = graphicsWaitStageMasks;
|
||||
submitInfo.signalSemaphoreCount = 2;
|
||||
submitInfo.pSignalSemaphores = graphicsSignalSemaphores;
|
||||
|
||||
uint64_t wait_values[2] = { compute_finished, compute_finished };
|
||||
uint64_t signal_values[2] = { all_finished, all_finished };
|
||||
|
||||
timeLineSubmitInfo.waitSemaphoreValueCount = 2;
|
||||
timeLineSubmitInfo.pWaitSemaphoreValues = &wait_values[0];
|
||||
timeLineSubmitInfo.signalSemaphoreValueCount = 2;
|
||||
timeLineSubmitInfo.pSignalSemaphoreValues = &signal_values[0];
|
||||
|
||||
submitInfo.pNext = &timeLineSubmitInfo;
|
||||
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
|
||||
// Increase timeline value base for next frame
|
||||
timeLineSemaphore.value = all_finished;
|
||||
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
updateComputeUniformBuffers();
|
||||
updateGraphicsUniformBuffers();
|
||||
draw();
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue