Fixed random seed when run in benchmark mode, use default random engine instead of fixed mersene twister

Refs #269
This commit is contained in:
saschawillems 2018-01-18 21:31:19 +01:00
parent 5790f30c17
commit 9e073bdd3b
11 changed files with 55 additions and 60 deletions

View file

@ -115,7 +115,6 @@ public:
camera.setRotation(glm::vec3(-30.0f, -45.0f, 0.0f)); camera.setRotation(glm::vec3(-30.0f, -45.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -3.5f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -3.5f));
settings.overlay = true; settings.overlay = true;
srand((unsigned int)time(NULL));
} }
~VulkanExample() ~VulkanExample()
@ -669,12 +668,11 @@ public:
// todo: base on frametime // todo: base on frametime
//compute.ubo.deltaT = frameTimer * 0.0075f; //compute.ubo.deltaT = frameTimer * 0.0075f;
std::mt19937 rg((unsigned)time(nullptr));
std::uniform_real_distribution<float> rd(1.0f, 6.0f);
if (simulateWind) { if (simulateWind) {
compute.ubo.gravity.x = cos(glm::radians(-timer * 360.0f)) * (rd(rg) - rd(rg)); std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
compute.ubo.gravity.z = sin(glm::radians(timer * 360.0f)) * (rd(rg) - rd(rg)); std::uniform_real_distribution<float> rd(1.0f, 6.0f);
compute.ubo.gravity.x = cos(glm::radians(-timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
compute.ubo.gravity.z = sin(glm::radians(timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
} }
else { else {
compute.ubo.gravity.x = 0.0f; compute.ubo.gravity.x = 0.0f;

View file

@ -289,7 +289,7 @@ public:
// Initial particle positions // Initial particle positions
std::vector<Particle> particleBuffer(numParticles); std::vector<Particle> particleBuffer(numParticles);
std::mt19937 rndGen(static_cast<uint32_t>(time(0))); std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::normal_distribution<float> rndDist(0.0f, 1.0f); std::normal_distribution<float> rndDist(0.0f, 1.0f);
for (uint32_t i = 0; i < static_cast<uint32_t>(attractors.size()); i++) for (uint32_t i = 0; i < static_cast<uint32_t>(attractors.size()); i++)
@ -307,15 +307,15 @@ public:
else else
{ {
// Position // Position
glm::vec3 position(attractors[i] + glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen)) * 0.75f); glm::vec3 position(attractors[i] + glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine)) * 0.75f);
float len = glm::length(glm::normalize(position - attractors[i])); float len = glm::length(glm::normalize(position - attractors[i]));
position.y *= 2.0f - (len * len); position.y *= 2.0f - (len * len);
// Velocity // Velocity
glm::vec3 angular = glm::vec3(0.5f, 1.5f, 0.5f) * (((i % 2) == 0) ? 1.0f : -1.0f); glm::vec3 angular = glm::vec3(0.5f, 1.5f, 0.5f) * (((i % 2) == 0) ? 1.0f : -1.0f);
glm::vec3 velocity = glm::cross((position - attractors[i]), angular) + glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen) * 0.025f); glm::vec3 velocity = glm::cross((position - attractors[i]), angular) + glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine) * 0.025f);
float mass = (rndDist(rndGen) * 0.5f + 0.5f) * 75.0f; float mass = (rndDist(rndEngine) * 0.5f + 0.5f) * 75.0f;
particle.pos = glm::vec4(position, mass); particle.pos = glm::vec4(position, mass);
particle.vel = glm::vec4(velocity, 0.0f); particle.vel = glm::vec4(velocity, 0.0f);
} }

View file

@ -233,14 +233,13 @@ public:
// Setup and fill the compute shader storage buffers containing the particles // Setup and fill the compute shader storage buffers containing the particles
void prepareStorageBuffers() void prepareStorageBuffers()
{ {
std::mt19937 rGenerator; std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rDistribution(-1.0f, 1.0f); std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f);
// Initial particle positions // Initial particle positions
std::vector<Particle> particleBuffer(PARTICLE_COUNT); std::vector<Particle> particleBuffer(PARTICLE_COUNT);
for (auto& particle : particleBuffer) for (auto& particle : particleBuffer) {
{ particle.pos = glm::vec2(rndDist(rndEngine), rndDist(rndEngine));
particle.pos = glm::vec2(rDistribution(rGenerator), rDistribution(rGenerator));
particle.vel = glm::vec2(0.0f); particle.vel = glm::vec2(0.0f);
particle.gradientPos.x = particle.pos.x / 2.0f; particle.gradientPos.x = particle.pos.x / 2.0f;
} }

View file

@ -446,12 +446,11 @@ public:
VK_CHECK_RESULT(uniformBuffers.dynamic.map()); VK_CHECK_RESULT(uniformBuffers.dynamic.map());
// Prepare per-object matrices with offsets and random rotations // Prepare per-object matrices with offsets and random rotations
std::mt19937 rndGen(static_cast<uint32_t>(time(0))); std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::normal_distribution<float> rndDist(-1.0f, 1.0f); std::normal_distribution<float> rndDist(-1.0f, 1.0f);
for (uint32_t i = 0; i < OBJECT_INSTANCES; i++) for (uint32_t i = 0; i < OBJECT_INSTANCES; i++) {
{ rotations[i] = glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine)) * 2.0f * (float)M_PI;
rotations[i] = glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen)) * 2.0f * (float)M_PI; rotationSpeeds[i] = glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine));
rotationSpeeds[i] = glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen));
} }
updateUniformBuffers(); updateUniformBuffers();

View file

@ -594,16 +594,15 @@ public:
std::vector<InstanceData> instanceData; std::vector<InstanceData> instanceData;
instanceData.resize(objectCount); instanceData.resize(objectCount);
std::mt19937 rndGenerator((unsigned)time(NULL)); std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> uniformDist(0.0f, 1.0f); std::uniform_real_distribution<float> uniformDist(0.0f, 1.0f);
for (uint32_t i = 0; i < objectCount; i++) for (uint32_t i = 0; i < objectCount; i++) {
{ instanceData[i].rot = glm::vec3(0.0f, float(M_PI) * uniformDist(rndEngine), 0.0f);
instanceData[i].rot = glm::vec3(0.0f, float(M_PI) * uniformDist(rndGenerator), 0.0f); float theta = 2 * float(M_PI) * uniformDist(rndEngine);
float theta = 2 * float(M_PI) * uniformDist(rndGenerator); float phi = acos(1 - 2 * uniformDist(rndEngine));
float phi = acos(1 - 2 * uniformDist(rndGenerator));
instanceData[i].pos = glm::vec3(sin(phi) * cos(theta), 0.0f, cos(phi)) * PLANT_RADIUS; instanceData[i].pos = glm::vec3(sin(phi) * cos(theta), 0.0f, cos(phi)) * PLANT_RADIUS;
instanceData[i].scale = 1.0f + uniformDist(rndGenerator) * 2.0f; instanceData[i].scale = 1.0f + uniformDist(rndEngine) * 2.0f;
instanceData[i].texIndex = i / OBJECT_INSTANCE_COUNT; instanceData[i].texIndex = i / OBJECT_INSTANCE_COUNT;
} }

View file

@ -441,7 +441,7 @@ public:
std::vector<InstanceData> instanceData; std::vector<InstanceData> instanceData;
instanceData.resize(INSTANCE_COUNT); instanceData.resize(INSTANCE_COUNT);
std::mt19937 rndGenerator(benchmark.active ? 0 : (unsigned)time(NULL)); std::default_random_engine rndGenerator(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> uniformDist(0.0, 1.0); std::uniform_real_distribution<float> uniformDist(0.0, 1.0);
std::uniform_int_distribution<uint32_t> rndTextureIndex(0, textures.rocks.layerCount); std::uniform_int_distribution<uint32_t> rndTextureIndex(0, textures.rocks.layerCount);

View file

@ -118,6 +118,8 @@ public:
// View frustum for culling invisible objects // View frustum for culling invisible objects
vks::Frustum frustum; vks::Frustum frustum;
std::default_random_engine rndEngine;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{ {
zoom = -32.5f; zoom = -32.5f;
@ -134,11 +136,10 @@ public:
#else #else
std::cout << "numThreads = " << numThreads << std::endl; std::cout << "numThreads = " << numThreads << std::endl;
#endif #endif
srand(time(NULL));
threadPool.setThreadCount(numThreads); threadPool.setThreadCount(numThreads);
numObjectsPerThread = 512 / numThreads; numObjectsPerThread = 512 / numThreads;
rndEngine.seed(benchmark.active ? 0 : (unsigned)time(nullptr));
paused = true;
} }
~VulkanExample() ~VulkanExample()
@ -167,7 +168,8 @@ public:
float rnd(float range) float rnd(float range)
{ {
return range * (rand() / double(RAND_MAX)); std::uniform_real_distribution<float> rndDist(0.0f, range);
return rndDist(rndEngine);
} }
// Create all threads and initialize shader push constants // Create all threads and initialize shader push constants
@ -193,11 +195,7 @@ public:
uint32_t posX = 0; uint32_t posX = 0;
uint32_t posZ = 0; uint32_t posZ = 0;
std::mt19937 rndGenerator((unsigned)time(NULL)); for (uint32_t i = 0; i < numThreads; i++) {
std::uniform_real_distribution<float> uniformDist(0.0f, 1.0f);
for (uint32_t i = 0; i < numThreads; i++)
{
ThreadData *thread = &threadData[i]; ThreadData *thread = &threadData[i];
// Create one command pool for each thread // Create one command pool for each thread
@ -219,10 +217,9 @@ public:
thread->pushConstBlock.resize(numObjectsPerThread); thread->pushConstBlock.resize(numObjectsPerThread);
thread->objectData.resize(numObjectsPerThread); thread->objectData.resize(numObjectsPerThread);
for (uint32_t j = 0; j < numObjectsPerThread; j++) for (uint32_t j = 0; j < numObjectsPerThread; j++) {
{ float theta = 2.0f * float(M_PI) * rnd(1.0f);
float theta = 2.0f * float(M_PI) * uniformDist(rndGenerator); float phi = acos(1.0f - 2.0f * rnd(1.0f));
float phi = acos(1.0f - 2.0f * uniformDist(rndGenerator));
thread->objectData[j].pos = glm::vec3(sin(phi) * cos(theta), 0.0f, cos(phi)) * 35.0f; thread->objectData[j].pos = glm::vec3(sin(phi) * cos(theta), 0.0f, cos(phi)) * 35.0f;
thread->objectData[j].rotation = glm::vec3(0.0f, rnd(360.0f), 0.0f); thread->objectData[j].rotation = glm::vec3(0.0f, rnd(360.0f), 0.0f);
@ -268,15 +265,16 @@ public:
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phong); vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phong);
// Update // Update
objectData->rotation.y += 2.5f * objectData->rotationSpeed * frameTimer; if (!paused) {
if (objectData->rotation.y > 360.0f) objectData->rotation.y += 2.5f * objectData->rotationSpeed * frameTimer;
{ if (objectData->rotation.y > 360.0f) {
objectData->rotation.y -= 360.0f; objectData->rotation.y -= 360.0f;
}
objectData->deltaT += 0.15f * frameTimer;
if (objectData->deltaT > 1.0f)
objectData->deltaT -= 1.0f;
objectData->pos.y = sin(glm::radians(objectData->deltaT * 360.0f)) * 2.5f;
} }
objectData->deltaT += 0.15f * frameTimer;
if (objectData->deltaT > 1.0f)
objectData->deltaT -= 1.0f;
objectData->pos.y = sin(glm::radians(objectData->deltaT * 360.0f)) * 2.5f;
objectData->model = glm::translate(glm::mat4(1.0f), objectData->pos); objectData->model = glm::translate(glm::mat4(1.0f), objectData->pos);
objectData->model = glm::rotate(objectData->model, -sinf(glm::radians(objectData->deltaT * 360.0f)) * 0.25f, glm::vec3(objectData->rotationDir, 0.0f, 0.0f)); objectData->model = glm::rotate(objectData->model, -sinf(glm::radians(objectData->deltaT * 360.0f)) * 0.25f, glm::vec3(objectData->rotationDir, 0.0f, 0.0f));
@ -593,8 +591,7 @@ public:
// Wait for fence to signal that all command buffers are ready // Wait for fence to signal that all command buffers are ready
VkResult fenceRes; VkResult fenceRes;
do do {
{
fenceRes = vkWaitForFences(device, 1, &renderFence, VK_TRUE, 100000000); fenceRes = vkWaitForFences(device, 1, &renderFence, VK_TRUE, 100000000);
} while (fenceRes == VK_TIMEOUT); } while (fenceRes == VK_TIMEOUT);
VK_CHECK_RESULT(fenceRes); VK_CHECK_RESULT(fenceRes);

View file

@ -11,6 +11,7 @@
#include <string.h> #include <string.h>
#include <assert.h> #include <assert.h>
#include <vector> #include <vector>
#include <random>
#define GLM_FORCE_RADIANS #define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE #define GLM_FORCE_DEPTH_ZERO_TO_ONE
@ -123,6 +124,8 @@ public:
std::vector<Particle> particleBuffer; std::vector<Particle> particleBuffer;
std::default_random_engine rndEngine;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{ {
zoom = -75.0f; zoom = -75.0f;
@ -131,7 +134,7 @@ public:
settings.overlay = true; settings.overlay = true;
zoomSpeed *= 1.5f; zoomSpeed *= 1.5f;
timerSpeed *= 8.0f; timerSpeed *= 8.0f;
srand(time(NULL)); rndEngine.seed(benchmark.active ? 0 : (unsigned)time(nullptr));
} }
~VulkanExample() ~VulkanExample()
@ -217,7 +220,8 @@ public:
float rnd(float range) float rnd(float range)
{ {
return range * (rand() / float(RAND_MAX)); std::uniform_real_distribution<float> rndDist(0.0f, range);
return rndDist(rndEngine);
} }
void initParticle(Particle *particle, glm::vec3 emitterPos) void initParticle(Particle *particle, glm::vec3 emitterPos)

View file

@ -1007,17 +1007,16 @@ public:
updateUniformBufferSSAOParams(); updateUniformBufferSSAOParams();
// SSAO // SSAO
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rndDist(0.0f, 1.0f); std::uniform_real_distribution<float> rndDist(0.0f, 1.0f);
std::random_device rndDev;
std::default_random_engine rndGen;
// Sample kernel // Sample kernel
std::vector<glm::vec4> ssaoKernel(SSAO_KERNEL_SIZE); std::vector<glm::vec4> ssaoKernel(SSAO_KERNEL_SIZE);
for (uint32_t i = 0; i < SSAO_KERNEL_SIZE; ++i) for (uint32_t i = 0; i < SSAO_KERNEL_SIZE; ++i)
{ {
glm::vec3 sample(rndDist(rndGen) * 2.0 - 1.0, rndDist(rndGen) * 2.0 - 1.0, rndDist(rndGen)); glm::vec3 sample(rndDist(rndEngine) * 2.0 - 1.0, rndDist(rndEngine) * 2.0 - 1.0, rndDist(rndEngine));
sample = glm::normalize(sample); sample = glm::normalize(sample);
sample *= rndDist(rndGen); sample *= rndDist(rndEngine);
float scale = float(i) / float(SSAO_KERNEL_SIZE); float scale = float(i) / float(SSAO_KERNEL_SIZE);
scale = lerp(0.1f, 1.0f, scale * scale); scale = lerp(0.1f, 1.0f, scale * scale);
ssaoKernel[i] = glm::vec4(sample * scale, 0.0f); ssaoKernel[i] = glm::vec4(sample * scale, 0.0f);
@ -1035,7 +1034,7 @@ public:
std::vector<glm::vec4> ssaoNoise(SSAO_NOISE_DIM * SSAO_NOISE_DIM); std::vector<glm::vec4> ssaoNoise(SSAO_NOISE_DIM * SSAO_NOISE_DIM);
for (uint32_t i = 0; i < static_cast<uint32_t>(ssaoNoise.size()); i++) for (uint32_t i = 0; i < static_cast<uint32_t>(ssaoNoise.size()); i++)
{ {
ssaoNoise[i] = glm::vec4(rndDist(rndGen) * 2.0f - 1.0f, rndDist(rndGen) * 2.0f - 1.0f, 0.0f, 0.0f); ssaoNoise[i] = glm::vec4(rndDist(rndEngine) * 2.0f - 1.0f, rndDist(rndEngine) * 2.0f - 1.0f, 0.0f, 0.0f);
} }
// Upload as texture // Upload as texture
textures.ssaoNoise.fromBuffer(ssaoNoise.data(), ssaoNoise.size() * sizeof(glm::vec4), VK_FORMAT_R32G32B32A32_SFLOAT, SSAO_NOISE_DIM, SSAO_NOISE_DIM, vulkanDevice, queue, VK_FILTER_NEAREST); textures.ssaoNoise.fromBuffer(ssaoNoise.data(), ssaoNoise.size() * sizeof(glm::vec4), VK_FORMAT_R32G32B32A32_SFLOAT, SSAO_NOISE_DIM, SSAO_NOISE_DIM, vulkanDevice, queue, VK_FILTER_NEAREST);

View file

@ -1009,7 +1009,7 @@ public:
glm::vec3(1.0f, 1.0f, 0.0f), glm::vec3(1.0f, 1.0f, 0.0f),
}; };
std::mt19937 rndGen(benchmark.active ? 0 : (unsigned)time(NULL)); std::default_random_engine rndGen(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f); std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f);
std::uniform_int_distribution<uint32_t> rndCol(0, static_cast<uint32_t>(colors.size()-1)); std::uniform_int_distribution<uint32_t> rndCol(0, static_cast<uint32_t>(colors.size()-1));

View file

@ -962,7 +962,7 @@ public:
void fillVirtualTexture(int32_t &mipLevel) void fillVirtualTexture(int32_t &mipLevel)
{ {
vkDeviceWaitIdle(device); vkDeviceWaitIdle(device);
std::default_random_engine rndEngine(std::random_device{}()); std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rndDist(0.0f, 1.0f); std::uniform_real_distribution<float> rndDist(0.0f, 1.0f);
std::vector<VkImageBlit> imageBlits; std::vector<VkImageBlit> imageBlits;
for (auto& page : texture.pages) for (auto& page : texture.pages)