Compute shader cloth simulation

This commit is contained in:
saschawillems 2017-07-09 11:39:10 +02:00
parent fd439a59e2
commit a55759b31b
14 changed files with 1157 additions and 0 deletions

View file

@ -0,0 +1,731 @@
/*
* Vulkan Example - Compute shader sloth simulation
*
* Updated compute shader by Lukas Bergdoll (https://github.com/Voultapher)
*
* Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
uint32_t sceneSetup = 1;
uint32_t readSet = 0;
uint32_t indexCount;
vks::Texture2D textureCloth;
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_NORMAL,
});
vks::Model modelSphere;
// Resources for the graphics part of the example
struct {
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VkPipelineLayout pipelineLayout;
struct Pipelines {
VkPipeline cloth;
VkPipeline sphere;
} pipelines;
vks::Buffer indices;
vks::Buffer uniformBuffer;
struct graphicsUBO {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos = glm::vec4(-1.0f, 2.0f, -1.0f, 1.0f);
} ubo;
} graphics;
// Resources for the compute part of the example
struct {
struct StorageBuffers {
vks::Buffer input;
vks::Buffer output;
} storageBuffers;
vks::Buffer uniformBuffer;
VkQueue queue;
VkCommandPool commandPool;
std::array<VkCommandBuffer,2> commandBuffers;
VkFence fence;
VkDescriptorSetLayout descriptorSetLayout;
std::array<VkDescriptorSet,2> descriptorSets;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
struct computeUBO {
float deltaT = 0.0f;
float particleMass = 0.1f;
float springStiffness = 2000.0f;
float damping = 0.25f;
float restDistH;
float restDistV;
float restDistD;
float sphereRadius = 0.5f;
glm::vec4 spherePos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
glm::vec4 gravity = glm::vec4(0.0f, 9.8f, 0.0f, 0.0f);
glm::ivec2 particleCount;
} ubo;
} compute;
// SSBO cloth grid particle declaration
struct Particle {
glm::vec4 pos;
glm::vec4 vel;
glm::vec4 uv;
glm::vec4 normal;
float pinned;
glm::vec3 _pad0;
};
struct Cloth {
glm::uvec2 gridsize = glm::uvec2(60, 60);
glm::vec2 size = glm::vec2(2.5f, 2.5f);
} cloth;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
enableTextOverlay = true;
title = "Vulkan Example - Compute shader cloth simulation";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-30.0f, -45.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -3.5f));
paused = true;
}
~VulkanExample()
{
// Graphics
graphics.uniformBuffer.destroy();
vkDestroyPipeline(device, graphics.pipelines.cloth, nullptr);
vkDestroyPipeline(device, graphics.pipelines.sphere, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
textureCloth.destroy();
modelSphere.destroy();
// Compute
compute.storageBuffers.input.destroy();
compute.storageBuffers.output.destroy();
compute.uniformBuffer.destroy();
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroyFence(device, compute.fence, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
};
void loadAssets()
{
textureCloth.loadFromFile(getAssetPath() + "textures/vulkan_cloth_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
modelSphere.loadFromFile(ASSET_PATH "models/geosphere.obj", vertexLayout, compute.ubo.sphereRadius * 0.05f, vulkanDevice, queue);
}
void buildCommandBuffers()
{
// Destroy command buffers if already present
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Draw the particle system using the update vertex buffer
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Render sphere
if (sceneSetup == 0) {
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.sphere);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
vkCmdBindIndexBuffer(drawCmdBuffers[i], modelSphere.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &modelSphere.vertices.buffer, offsets);
vkCmdDrawIndexed(drawCmdBuffers[i], modelSphere.indexCount, 1, 0, 0, 0);
}
// Render cloth
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.cloth);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
vkCmdBindIndexBuffer(drawCmdBuffers[i], graphics.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &compute.storageBuffers.output.buffer, offsets);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
// todo: check barriers (validation, separate compute queue)
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (uint32_t i = 0; i < 2; i++) {
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffers[i], &cmdBufInfo));
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = compute.storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = compute.storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(compute.commandBuffers[i],
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
vkCmdBindPipeline(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
// Dispatch the compute job
for (uint32_t j = 0; j < 64; j++) {
readSet = 1 - readSet;
vkCmdBindDescriptorSets(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSets[readSet], 0, 0);
vkCmdDispatch(compute.commandBuffers[i], cloth.gridsize.x / 10, cloth.gridsize.y / 10, 1);
for (auto &barrier : bufferBarriers) {
barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
barrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
}
vkCmdPipelineBarrier(
compute.commandBuffers[i],
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
}
for (auto &barrier : bufferBarriers) {
barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
barrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
barrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
}
vkCmdPipelineBarrier(
compute.commandBuffers[i],
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
vkEndCommandBuffer(compute.commandBuffers[i]);
}
}
// Setup and fill the compute shader storage buffers containing the particles
void prepareStorageBuffers()
{
std::vector<Particle> particleBuffer(cloth.gridsize.x * cloth.gridsize.y);
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
float du = 1.0f / (cloth.gridsize.x - 1);
float dv = 1.0f / (cloth.gridsize.y - 1);
switch (sceneSetup) {
case 0 :
{
// Horz. cloth falls onto sphere
glm::mat4 transM = glm::translate(glm::mat4(), glm::vec3(- cloth.size.x / 2.0f, -2.0f, - cloth.size.y / 2.0f));
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, 0.0f, dy * i, 1.0f);
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(1.0f - du * i, dv * j, 0.0f, 0.0f);
}
}
break;
}
case 1:
{
// Vert. Pinned cloth
glm::mat4 transM = glm::translate(glm::mat4(), glm::vec3(- cloth.size.x / 2.0f, - cloth.size.y / 2.0f, 0.0f));
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, dy * i, 0.0f, 1.0f);
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(du * j, dv * i, 0.0f, 0.0f);
// Pin some particles
particleBuffer[i + j * cloth.gridsize.y].pinned = (i == 0) && ((j == 0) || (j == cloth.gridsize.x / 3) || (j == cloth.gridsize.x - cloth.gridsize.x / 3) || (j == cloth.gridsize.x - 1));
// Remove sphere
compute.ubo.spherePos.z = -10.0f;
}
}
break;
}
}
VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle);
// Staging
// SSBO won't be changed on the host after upload so copy to device local memory
vks::Buffer stagingBuffer;
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
storageBufferSize,
particleBuffer.data());
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.input,
storageBufferSize);
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.output,
storageBufferSize);
// Copy from staging buffer
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.input.buffer, 1, &copyRegion);
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.output.buffer, 1, &copyRegion);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
// Indices
std::vector<uint32_t> indices;
for (uint32_t y = 0; y < cloth.gridsize.y - 1; y++) {
for (uint32_t x = 0; x < cloth.gridsize.x; x++) {
indices.push_back((y + 1) * cloth.gridsize.x + x);
indices.push_back((y)* cloth.gridsize.x + x);
}
// Primitive restart (signlaed by special value 0xFFFFFFFF)
indices.push_back(0xFFFFFFFF);
}
uint32_t indexBufferSize = static_cast<uint32_t>(indices.size()) * sizeof(uint32_t);
indexCount = static_cast<uint32_t>(indices.size());
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
indexBufferSize,
indices.data());
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&graphics.indices,
indexBufferSize);
// Copy from staging buffer
copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion = {};
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, graphics.indices.buffer, 1, &copyRegion);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupLayoutsAndDescriptors()
{
// Set layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &graphics.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureCloth.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_TRUE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables, 0);
// Rendering pipeline
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/computecloth/cloth.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/computecloth/cloth.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
graphics.pipelineLayout,
renderPass,
0);
// Input attributes
// Binding description
std::vector<VkVertexInputBindingDescription> inputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX)
};
// Attribute descriptions
std::vector<VkVertexInputAttributeDescription> inputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, pos)),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Particle, uv)),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, normal))
};
// Assign to vertex buffer
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(inputBindings.size());
inputState.pVertexBindingDescriptions = inputBindings.data();
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
inputState.pVertexAttributeDescriptions = inputAttributes.data();
pipelineCreateInfo.pVertexInputState = &inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.cloth));
// Sphere rendering pipeline
inputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX)
};
inputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5)
};
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
shaderStages[0] = loadShader(getAssetPath() + "shaders/computecloth/sphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/computecloth/sphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.sphere));
}
void prepareCompute()
{
// Create a compute capable device queue
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Create compute pipeline
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&compute.descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&compute.descriptorSetLayout,
1);
// Create two descriptor sets with input and output buffers switched
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[0]));
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[1]));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &compute.storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &compute.storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &compute.storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &compute.storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL);
// Create pipeline
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/computecloth/cloth.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
// Separate command pool as queue family for compute may be different than graphics
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 2);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffers[0]));
// Fence for compute CB sync
VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence));
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Compute shader uniform buffer block
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&compute.uniformBuffer,
sizeof(compute.ubo));
VK_CHECK_RESULT(compute.uniformBuffer.map());
// Initial values
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
compute.ubo.restDistH = dx;
compute.ubo.restDistV = dy;
compute.ubo.restDistD = sqrtf(dx * dx + dy * dy);
compute.ubo.particleCount = cloth.gridsize;
updateComputeUBO();
// Vertex shader uniform buffer block
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&graphics.uniformBuffer,
sizeof(graphics.ubo));
VK_CHECK_RESULT(graphics.uniformBuffer.map());
updateGraphicsUBO();
}
void updateComputeUBO()
{
if (!paused) {
compute.ubo.deltaT = 0.000005f;
// todo: base on frametime
//compute.ubo.deltaT = frameTimer * 0.0075f;
}
else {
compute.ubo.deltaT = 0.0f;
}
memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo));
}
void updateGraphicsUBO()
{
graphics.ubo.projection = camera.matrices.perspective;
graphics.ubo.view = camera.matrices.view;
memcpy(graphics.uniformBuffer.mapped, &graphics.ubo, sizeof(graphics.ubo));
}
void draw()
{
// Submit graphics commands
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &compute.fence);
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[readSet];
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, compute.fence));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorPool();
setupLayoutsAndDescriptors();
preparePipelines();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
updateComputeUBO();
}
virtual void viewChanged()
{
updateGraphicsUBO();
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
textOverlay->addText(std::to_string(frameTimer * 0.0075f), 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
}
};
VULKAN_EXAMPLE_MAIN()

View file

@ -0,0 +1,102 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{12ACF921-90B1-44D9-AF06-B5C0F0B8191A}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<OutDir>$(SolutionDir)\bin\</OutDir>
<IntDir>$(SolutionDir)\bin\intermediate\$(ProjectName)\$(ConfigurationName)</IntDir>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>true</LinkIncremental>
<OutDir>$(SolutionDir)\bin\</OutDir>
<IntDir>$(SolutionDir)\bin\intermediate\$(ProjectName)\$(ConfigurationName)</IntDir>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<PreprocessorDefinitions>WIN32;_DEBUG;_WINDOWS;VK_USE_PLATFORM_WIN32_KHR;_USE_MATH_DEFINES;NOMINMAX;_CRT_SECURE_NO_WARNINGS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreadedDebugDLL</RuntimeLibrary>
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
<Optimization>Disabled</Optimization>
<AdditionalIncludeDirectories>..\base;..\external\glm;..\external\gli;..\external\assimp;..\external;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalOptions>/FS %(AdditionalOptions)</AdditionalOptions>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<AdditionalDependencies>..\libs\vulkan\vulkan-1.lib;..\libs\assimp\assimp.lib;%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<PreprocessorDefinitions>WIN32;NDEBUG;_WINDOWS;VK_USE_PLATFORM_WIN32_KHR;_USE_MATH_DEFINES;NOMINMAX;_CRT_SECURE_NO_WARNINGS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreadedDLL</RuntimeLibrary>
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
<AdditionalIncludeDirectories>..\base;..\external\glm;..\external\gli;..\external\assimp;..\external;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<AdditionalDependencies>..\libs\vulkan\vulkan-1.lib;..\libs\assimp\assimp.lib;%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="..\base\vulkandebug.cpp" />
<ClCompile Include="..\base\vulkanexamplebase.cpp" />
<ClCompile Include="..\base\vulkantools.cpp" />
<ClCompile Include="computecloth.cpp" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\base\vulkandebug.h" />
<ClInclude Include="..\base\vulkanexamplebase.h" />
<ClInclude Include="..\base\vulkantools.h" />
</ItemGroup>
<ItemGroup>
<None Include="..\data\shaders\computecloth\cloth.comp" />
<None Include="..\data\shaders\computecloth\cloth.frag" />
<None Include="..\data\shaders\computecloth\cloth.vert" />
<None Include="..\data\shaders\computecloth\sphere.frag" />
<None Include="..\data\shaders\computecloth\sphere.vert" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View file

@ -0,0 +1,62 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hh;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
<Filter Include="Resource Files">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav</Extensions>
</Filter>
<Filter Include="Shaders">
<UniqueIdentifier>{e28680da-cc95-413d-b6f0-0e1f9967ee88}</UniqueIdentifier>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\base\vulkandebug.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\base\vulkanexamplebase.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\base\vulkantools.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="computecloth.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\base\vulkandebug.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\base\vulkanexamplebase.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\base\vulkantools.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<None Include="..\data\shaders\computecloth\cloth.comp">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\computecloth\cloth.frag">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\computecloth\cloth.vert">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\computecloth\sphere.frag">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\computecloth\sphere.vert">
<Filter>Shaders</Filter>
</None>
</ItemGroup>
</Project>

View file

@ -0,0 +1,148 @@
#version 450
struct Particle {
vec4 pos;
vec4 vel;
vec4 uv;
vec4 normal;
float pinned;
};
layout(std430, binding = 0) buffer ParticleIn {
Particle particleIn[ ];
};
layout(std430, binding = 1) buffer ParticleOut {
Particle particleOut[ ];
};
// todo: use shared memory to speed up calculation
layout (local_size_x = 10, local_size_y = 10) in;
layout (binding = 2) uniform UBO
{
float deltaT;
float particleMass;
float springStiffness;
float damping;
float restDistH;
float restDistV;
float restDistD;
float sphereRadius;
vec4 spherePos;
vec4 gravity;
ivec2 particleCount;
} params;
vec3 springForce(vec3 p0, vec3 p1, float restDist)
{
vec3 dist = p0 - p1;
return normalize(dist) * params.springStiffness * (length(dist) - restDist);
}
void main()
{
uvec3 id = gl_GlobalInvocationID;
uint index = id.y * params.particleCount.x + id.x;
if (index > params.particleCount.x * params.particleCount.y)
return;
// Pinned?
if (particleIn[index].pinned == 1.0) {
particleOut[index].pos = particleOut[index].pos;
particleOut[index].vel = vec4(0.0);
return;
}
// Initial force from gravity
vec3 force = params.gravity.xyz * params.particleMass;
vec3 pos = particleIn[index].pos.xyz;
vec3 vel = particleIn[index].vel.xyz;
// Spring forces from neighboring particles
// left
if (id.x > 0) {
force += springForce(particleIn[index-1].pos.xyz, pos, params.restDistH);
}
// right
if (id.x < params.particleCount.x - 1) {
force += springForce(particleIn[index + 1].pos.xyz, pos, params.restDistH);
}
// upper
if (id.y < params.particleCount.y - 1) {
force += springForce(particleIn[index + params.particleCount.x].pos.xyz, pos, params.restDistV);
}
// lower
if (id.y > 0) {
force += springForce(particleIn[index - params.particleCount.x].pos.xyz, pos, params.restDistV);
}
// upper-left
if ((id.x > 0) && (id.y < params.particleCount.y - 1)) {
force += springForce(particleIn[index + params.particleCount.x - 1].pos.xyz, pos, params.restDistD);
}
// lower-left
if ((id.x > 0) && (id.y > 0)) {
force += springForce(particleIn[index - params.particleCount.x - 1].pos.xyz, pos, params.restDistD);
}
// upper-right
if ((id.x < params.particleCount.x - 1) && (id.y < params.particleCount.y - 1)) {
force += springForce(particleIn[index + params.particleCount.x + 1].pos.xyz, pos, params.restDistD);
}
// lower-right
if ((id.x < params.particleCount.x - 1) && (id.y > 0)) {
force += springForce(particleIn[index - params.particleCount.x + 1].pos.xyz, pos, params.restDistD);
}
force += (-params.damping * vel);
// Integrate
vec3 f = force * (1.0 / params.particleMass);
particleOut[index].pos = vec4(pos + vel * params.deltaT + 0.5 * f * params.deltaT * params.deltaT, 1.0);
particleOut[index].vel = vec4(vel + f * params.deltaT, 0.0);
// Sphere collision
vec3 sphereDist = particleOut[index].pos.xyz - params.spherePos.xyz;
if (length(sphereDist) < params.sphereRadius + 0.01) {
// If the particle is inside the sphere, push it to the outer radius
particleOut[index].pos.xyz = params.spherePos.xyz + normalize(sphereDist) * (params.sphereRadius + 0.01);
// Cancel out velocity
particleOut[index].vel = vec4(0.0);
}
// Normals
// todo: Only once (use push const to check)
vec3 normal = vec3(0.0);
vec3 a, b, c;
if (id.y > 0) {
if (id.x > 0) {
a = particleIn[index - 1].pos.xyz - pos;
b = particleIn[index - params.particleCount.x - 1].pos.xyz - pos;
c = particleIn[index - params.particleCount.x].pos.xyz - pos;
normal += cross(a,b) + cross(b,c);
}
if (id.x < params.particleCount.x - 1) {
a = particleIn[index - params.particleCount.x].pos.xyz - pos;
b = particleIn[index - params.particleCount.x + 1].pos.xyz - pos;
c = particleIn[index + 1].pos.xyz - pos;
normal += cross(a,b) + cross(b,c);
}
}
if (id.y < params.particleCount.y - 1) {
if (id.x > 0) {
a = particleIn[index + params.particleCount.x].pos.xyz - pos;
b = particleIn[index + params.particleCount.x - 1].pos.xyz - pos;
c = particleIn[index - 1].pos.xyz - pos;
normal += cross(a,b) + cross(b,c);
}
if (id.x < params.particleCount.x - 1) {
a = particleIn[index + 1].pos.xyz - pos;
b = particleIn[index + params.particleCount.x + 1].pos.xyz - pos;
c = particleIn[index + params.particleCount.x].pos.xyz - pos;
normal += cross(a,b) + cross(b,c);
}
}
particleOut[index].normal = vec4(normalize(normal), 0.0f);
}

Binary file not shown.

View file

@ -0,0 +1,22 @@
#version 450
layout (binding = 1) uniform sampler2D samplerColor;
layout (location = 0) in vec2 inUV;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec3 inViewVec;
layout (location = 3) in vec3 inLightVec;
layout (location = 0) out vec4 outFragColor;
void main ()
{
vec3 color = texture(samplerColor, inUV).rgb;
vec3 N = normalize(inNormal);
vec3 L = normalize(inLightVec);
vec3 V = normalize(inViewVec);
vec3 R = reflect(-L, N);
vec3 diffuse = max(dot(N, L), 0.15) * vec3(1.0);
vec3 specular = pow(max(dot(R, V), 0.0), 8.0) * vec3(0.2);
outFragColor = vec4(diffuse * color.rgb + specular, 1.0);
}

Binary file not shown.

View file

@ -0,0 +1,35 @@
#version 450
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec2 inUV;
layout (location = 2) in vec3 inNormal;
layout (location = 0) out vec2 outUV;
layout (location = 1) out vec3 outNormal;
layout (location = 2) out vec3 outViewVec;
layout (location = 3) out vec3 outLightVec;
layout (binding = 0) uniform UBO
{
mat4 projection;
mat4 modelview;
vec4 lightPos;
} ubo;
out gl_PerVertex
{
vec4 gl_Position;
};
void main ()
{
outUV = inUV;
outNormal = inNormal.xyz;
vec4 eyePos = ubo.modelview * vec4(inPos.x, inPos.y, inPos.z, 1.0);
gl_Position = ubo.projection * eyePos;
vec4 pos = vec4(inPos, 1.0);
vec3 lPos = ubo.lightPos.xyz;
outLightVec = lPos - pos.xyz;
outViewVec = -pos.xyz;
}

Binary file not shown.

View file

@ -0,0 +1,19 @@
#version 450
layout (location = 0) in vec3 inNormal;
layout (location = 1) in vec3 inViewVec;
layout (location = 2) in vec3 inLightVec;
layout (location = 0) out vec4 outFragColor;
void main ()
{
vec3 color = vec3(0.5);
vec3 N = normalize(inNormal);
vec3 L = normalize(inLightVec);
vec3 V = normalize(inViewVec);
vec3 R = reflect(-L, N);
vec3 diffuse = max(dot(N, L), 0.15) * vec3(1.0);
vec3 specular = pow(max(dot(R, V), 0.0), 32.0) * vec3(1.0);
outFragColor = vec4(diffuse * color.rgb + specular, 1.0);
}

Binary file not shown.

View file

@ -0,0 +1,31 @@
#version 450
layout (location = 0) in vec3 inPos;
layout (location = 2) in vec3 inNormal;
layout (location = 0) out vec3 outNormal;
layout (location = 1) out vec3 outViewVec;
layout (location = 2) out vec3 outLightVec;
layout (binding = 0) uniform UBO
{
mat4 projection;
mat4 modelview;
vec4 lightPos;
} ubo;
out gl_PerVertex
{
vec4 gl_Position;
};
void main ()
{
vec4 eyePos = ubo.modelview * vec4(inPos.x, inPos.y, inPos.z, 1.0);
gl_Position = ubo.projection * eyePos;
vec4 pos = vec4(inPos, 1.0);
vec3 lPos = ubo.lightPos.xyz;
outLightVec = lPos - pos.xyz;
outViewVec = -pos.xyz;
outNormal = inNormal;
}

Binary file not shown.

View file

@ -151,6 +151,8 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "imgui", "imgui\imgui.vcxpro
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "pbrtexture", "pbrtexture\pbrtexture.vcxproj", "{60316D67-E879-4671-B9BA-ED6B26F13AC7}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "computecloth", "computecloth\computecloth.vcxproj", "{12ACF921-90B1-44D9-AF06-B5C0F0B8191A}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
@ -369,6 +371,10 @@ Global
{60316D67-E879-4671-B9BA-ED6B26F13AC7}.Debug|x64.Build.0 = Debug|x64
{60316D67-E879-4671-B9BA-ED6B26F13AC7}.Release|x64.ActiveCfg = Release|x64
{60316D67-E879-4671-B9BA-ED6B26F13AC7}.Release|x64.Build.0 = Release|x64
{12ACF921-90B1-44D9-AF06-B5C0F0B8191A}.Debug|x64.ActiveCfg = Debug|x64
{12ACF921-90B1-44D9-AF06-B5C0F0B8191A}.Debug|x64.Build.0 = Debug|x64
{12ACF921-90B1-44D9-AF06-B5C0F0B8191A}.Release|x64.ActiveCfg = Release|x64
{12ACF921-90B1-44D9-AF06-B5C0F0B8191A}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
@ -394,5 +400,6 @@ Global
{659987E9-863C-4B9B-A3D4-CBA7D67A9516} = {BE290A75-7E65-4D0A-B419-774A309B6A60}
{92B2640A-0CC5-48EA-B34C-520BA13938D1} = {BE290A75-7E65-4D0A-B419-774A309B6A60}
{60316D67-E879-4671-B9BA-ED6B26F13AC7} = {BE290A75-7E65-4D0A-B419-774A309B6A60}
{12ACF921-90B1-44D9-AF06-B5C0F0B8191A} = {6B47BC47-0394-429E-9441-867EC23DFCD4}
EndGlobalSection
EndGlobal