computecloth: Optimize barriers and add compute queue double buffering (#1128)

* Optimize compute-to-compute barriers and adjust access masks for buffer queue transfers

* Add compute queue double buffering for in-parallel compute / graphics queue processing
This commit is contained in:
SRSaunders 2025-01-24 03:18:03 -05:00 committed by GitHub
parent bd7fd79bb8
commit affe2609c5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

90
examples/computecloth/computecloth.cpp Normal file → Executable file
View file

@ -70,14 +70,17 @@ public:
} graphics;
// Resources for the compute part of the example
// SRS - Number of compute command buffers: set to 1 for serialized processing or 2 for in-parallel with graphics queue
#define COMPUTE_CMD_BUFFERS 2
struct Compute {
struct Semaphores {
typedef struct Semaphores_t {
VkSemaphore ready{ VK_NULL_HANDLE };
VkSemaphore complete{ VK_NULL_HANDLE };
} semaphores;
} semaphores_t;
std::array<semaphores_t, COMPUTE_CMD_BUFFERS> semaphores{};
VkQueue queue{ VK_NULL_HANDLE };
VkCommandPool commandPool{ VK_NULL_HANDLE };
std::array<VkCommandBuffer, 2> commandBuffers{};
std::array<VkCommandBuffer, COMPUTE_CMD_BUFFERS> commandBuffers{};
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
std::array<VkDescriptorSet, 2> descriptorSets{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
@ -126,8 +129,10 @@ public:
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroySemaphore(device, compute.semaphores.ready, nullptr);
vkDestroySemaphore(device, compute.semaphores.complete, nullptr);
for (uint32_t i = 0; i < compute.semaphores.size(); i++) {
vkDestroySemaphore(device, compute.semaphores[i].ready, nullptr);
vkDestroySemaphore(device, compute.semaphores[i].complete, nullptr);
}
vkDestroyCommandPool(device, compute.commandPool, nullptr);
// SSBOs
@ -176,7 +181,7 @@ public:
}
}
void addComputeToComputeBarriers(VkCommandBuffer commandBuffer)
void addComputeToComputeBarriers(VkCommandBuffer commandBuffer, uint32_t readSet)
{
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
@ -185,10 +190,20 @@ public:
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
if (readSet == 0)
{
// SRS - we have written to output.buffer and need a memory barrier before reading it
// - don't need a memory barrier for input.buffer, the execution barrier is enough
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
}
else //if (readSet == 1)
{
// SRS - we have written to input.buffer and need a memory barrier before reading it
// - don't need a memory barrier for output.buffer, the execution barrier is enough
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
}
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
@ -280,7 +295,7 @@ public:
vkCmdEndRenderPass(drawCmdBuffers[i]);
// release the storage buffers to the compute queue
addGraphicsToComputeBarriers(drawCmdBuffers[i], VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
addGraphicsToComputeBarriers(drawCmdBuffers[i], VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
@ -292,12 +307,12 @@ public:
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
cmdBufInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
for (uint32_t i = 0; i < 2; i++) {
for (uint32_t i = 0; i < compute.commandBuffers.size(); i++) {
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffers[i], &cmdBufInfo));
// Acquire the storage buffers from the graphics queue
addGraphicsToComputeBarriers(compute.commandBuffers[i], 0, VK_ACCESS_SHADER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
addGraphicsToComputeBarriers(compute.commandBuffers[i], 0, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
vkCmdBindPipeline(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
@ -305,6 +320,7 @@ public:
vkCmdPushConstants(compute.commandBuffers[i], compute.pipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(uint32_t), &calculateNormals);
// Dispatch the compute job
// SRS - Iterations **must** be an even number, so that readSet starts at 1 and the final result ends up in output.buffer with readSet equal to 0
const uint32_t iterations = 64;
for (uint32_t j = 0; j < iterations; j++) {
readSet = 1 - readSet;
@ -319,7 +335,7 @@ public:
// Don't add a barrier on the last iteration of the loop, since we'll have an explicit release to the graphics queue
if (j != iterations - 1) {
addComputeToComputeBarriers(compute.commandBuffers[i]);
addComputeToComputeBarriers(compute.commandBuffers[i], readSet);
}
}
@ -386,7 +402,7 @@ public:
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
addGraphicsToComputeBarriers(copyCmd, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
addGraphicsToComputeBarriers(copyCmd, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
@ -595,13 +611,15 @@ public:
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 2);
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, static_cast<uint32_t>(compute.commandBuffers.size()));
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffers[0]));
// Semaphores for graphics / compute synchronization
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores.ready));
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores.complete));
for (uint32_t i = 0; i < compute.semaphores.size(); i++) {
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores[i].ready));
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores[i].complete));
}
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
@ -643,20 +661,46 @@ public:
// We'll be using semaphores to synchronize between the compute shader updating the cloth and the graphics pipeline drawing it
static bool firstDraw = true;
static uint32_t computeSubmitIndex{ 0 }, graphicsSubmitIndex{ 0 };
if (COMPUTE_CMD_BUFFERS > 1) // should be constexpr, but requires C++17
{
// SRS - if we are double buffering the compute queue, swap the compute command buffer indices
graphicsSubmitIndex = computeSubmitIndex;
computeSubmitIndex = 1 - graphicsSubmitIndex;
}
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
VkPipelineStageFlags computeWaitDstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
if (!firstDraw) {
computeSubmitInfo.waitSemaphoreCount = 1;
computeSubmitInfo.pWaitSemaphores = &compute.semaphores.ready;
computeSubmitInfo.pWaitSemaphores = &compute.semaphores[computeSubmitIndex].ready;
computeSubmitInfo.pWaitDstStageMask = &computeWaitDstStageMask;
}
else {
firstDraw = false;
if (COMPUTE_CMD_BUFFERS > 1) // should be constexpr, but requires C++17
{
// SRS - if we are double buffering the compute queue, submit extra command buffer at start
computeSubmitInfo.signalSemaphoreCount = 1;
computeSubmitInfo.pSignalSemaphores = &compute.semaphores[graphicsSubmitIndex].complete;
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[graphicsSubmitIndex];
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
// Add an extra set of acquire and release barriers to the graphics queue,
// so that when the second compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "acquire" to its "release" and vice versa
VkCommandBuffer barrierCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
addComputeToGraphicsBarriers(barrierCmd, 0, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT);
addGraphicsToComputeBarriers(barrierCmd, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
vulkanDevice->flushCommandBuffer(barrierCmd, queue, true);
}
}
computeSubmitInfo.signalSemaphoreCount = 1;
computeSubmitInfo.pSignalSemaphores = &compute.semaphores.complete;
computeSubmitInfo.pSignalSemaphores = &compute.semaphores[computeSubmitIndex].complete;
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[readSet];
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[computeSubmitIndex];
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
@ -667,10 +711,10 @@ public:
submitPipelineStages, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
};
VkSemaphore waitSemaphores[2] = {
semaphores.presentComplete, compute.semaphores.complete
semaphores.presentComplete, compute.semaphores[graphicsSubmitIndex].complete
};
VkSemaphore signalSemaphores[2] = {
semaphores.renderComplete, compute.semaphores.ready
semaphores.renderComplete, compute.semaphores[graphicsSubmitIndex].ready
};
submitInfo.waitSemaphoreCount = 2;