Add slang shaders for tessellation samples

This commit is contained in:
Sascha Willems 2025-05-16 20:12:30 +02:00
parent c2e3b494da
commit c58fd1844b
5 changed files with 639 additions and 0 deletions

View file

@ -0,0 +1,42 @@
/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSInput
{
float3 Pos;
float3 Normal;
float2 UV;
};
struct VSOutput
{
float4 Pos : SV_POSITION;
float2 UV;
};
struct UBO
{
float4x4 mvp;
};
ConstantBuffer<UBO> ubo;
Sampler2D samplerColorMap;
[shader("vertex")]
VSOutput vertexMain(VSInput input)
{
VSOutput output;
output.Pos = mul(ubo.mvp, float4(input.Pos, 1.0));
output.UV = input.UV;
return output;
}
[shader("fragment")]
float4 fragmentMain(VSOutput input)
{
return samplerColorMap.Sample(input.UV);
}

View file

@ -0,0 +1,252 @@
/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSInput
{
float3 Pos;
float3 Normal;
float2 UV;
};
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct DSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
float3 ViewVec;
float3 LightVec;
float3 EyePos;
float3 WorldPos;
};
struct UBO
{
float4x4 projection;
float4x4 modelview;
float4 lightPos;
float4 frustumPlanes[6];
float displacementFactor;
float tessellationFactor;
float2 viewportDim;
float tessellatedEdgeSize;
};
ConstantBuffer<UBO> ubo;
Sampler2D samplerHeight;
Sampler2DArray samplerLayers;
struct HSOutput
{
float4 Pos : SV_POSITION;
float3 Normal : NORMAL0;
float2 UV : TEXCOORD0;
};
struct ConstantsHSOutput
{
float TessLevelOuter[4] : SV_TessFactor;
float TessLevelInner[2] : SV_InsideTessFactor;
};
// Calculate the tessellation factor based on screen space
// dimensions of the edge
float screenSpaceTessFactor(float4 p0, float4 p1)
{
// Calculate edge mid point
float4 midPoint = 0.5 * (p0 + p1);
// Sphere radius as distance between the control points
float radius = distance(p0, p1) / 2.0;
// View space
float4 v0 = mul(ubo.modelview, midPoint);
// Project into clip space
float4 clip0 = mul(ubo.projection, (v0 - float4(radius, float3(0.0, 0.0, 0.0))));
float4 clip1 = mul(ubo.projection, (v0 + float4(radius, float3(0.0, 0.0, 0.0))));
// Get normalized device coordinates
clip0 /= clip0.w;
clip1 /= clip1.w;
// Convert to viewport coordinates
clip0.xy *= ubo.viewportDim;
clip1.xy *= ubo.viewportDim;
// Return the tessellation factor based on the screen size
// given by the distance of the two edge control points in screen space
// and a reference (min.) tessellation size for the edge set by the application
return clamp(distance(clip0, clip1) / ubo.tessellatedEdgeSize * ubo.tessellationFactor, 1.0, 64.0);
}
// Checks the current's patch visibility against the frustum using a sphere check
// Sphere radius is given by the patch size
bool frustumCheck(float4 Pos, float2 inUV)
{
// Fixed radius (increase if patch size is increased in example)
const float radius = 8.0f;
float4 pos = Pos;
pos.y -= samplerHeight.SampleLevel(inUV, 0.0).r * ubo.displacementFactor;
// Check sphere against frustum planes
for (int i = 0; i < 6; i++) {
if (dot(pos, ubo.frustumPlanes[i]) + radius < 0.0)
{
return false;
}
}
return true;
}
ConstantsHSOutput ConstantsHS(InputPatch<VSOutput, 4> patch)
{
ConstantsHSOutput output;
if (!frustumCheck(patch[0].Pos, patch[0].UV))
{
output.TessLevelInner[0] = 0.0;
output.TessLevelInner[1] = 0.0;
output.TessLevelOuter[0] = 0.0;
output.TessLevelOuter[1] = 0.0;
output.TessLevelOuter[2] = 0.0;
output.TessLevelOuter[3] = 0.0;
}
else
{
if (ubo.tessellationFactor > 0.0)
{
output.TessLevelOuter[0] = screenSpaceTessFactor(patch[3].Pos, patch[0].Pos);
output.TessLevelOuter[1] = screenSpaceTessFactor(patch[0].Pos, patch[1].Pos);
output.TessLevelOuter[2] = screenSpaceTessFactor(patch[1].Pos, patch[2].Pos);
output.TessLevelOuter[3] = screenSpaceTessFactor(patch[2].Pos, patch[3].Pos);
output.TessLevelInner[0] = lerp(output.TessLevelOuter[0], output.TessLevelOuter[3], 0.5);
output.TessLevelInner[1] = lerp(output.TessLevelOuter[2], output.TessLevelOuter[1], 0.5);
}
else
{
// Tessellation factor can be set to zero by example
// to demonstrate a simple passthrough
output.TessLevelInner[0] = 1.0;
output.TessLevelInner[1] = 1.0;
output.TessLevelOuter[0] = 1.0;
output.TessLevelOuter[1] = 1.0;
output.TessLevelOuter[2] = 1.0;
output.TessLevelOuter[3] = 1.0;
}
}
return output;
}
float3 sampleTerrainLayer(float2 inUV)
{
// Define some layer ranges for sampling depending on terrain height
float2 layers[6];
layers[0] = float2(-10.0, 10.0);
layers[1] = float2(5.0, 45.0);
layers[2] = float2(45.0, 80.0);
layers[3] = float2(75.0, 100.0);
layers[4] = float2(95.0, 140.0);
layers[5] = float2(140.0, 190.0);
float3 color = float3(0.0, 0.0, 0.0);
// Get height from displacement map
float height = samplerHeight.SampleLevel(inUV, 0.0).r * 255.0;
for (int i = 0; i < 6; i++)
{
float range = layers[i].y - layers[i].x;
float weight = (range - abs(height - layers[i].y)) / range;
weight = max(0.0, weight);
color += weight * samplerLayers.Sample(float3(inUV * 16.0, i)).rgb;
}
return color;
}
float fog(float density, float4 FragCoord)
{
const float LOG2 = -1.442695;
float dist = FragCoord.z / FragCoord.w * 0.1;
float d = density * dist;
return 1.0 - clamp(exp2(d * d * LOG2), 0.0, 1.0);
}
[shader("vertex")]
VSOutput vertexMain(VSInput input)
{
VSOutput output;
output.Pos = float4(input.Pos.xyz, 1.0);
output.UV = input.UV;
output.Normal = input.Normal;
return output;
}
[shader("hull")]
[domain("quad")]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(4)]
[patchconstantfunc("ConstantsHS")]
[maxtessfactor(20.0f)]
HSOutput hullMain(InputPatch<VSOutput, 4> patch, uint InvocationID: SV_OutputControlPointID)
{
HSOutput output;
output.Pos = patch[InvocationID].Pos;
output.Normal = patch[InvocationID].Normal;
output.UV = patch[InvocationID].UV;
return output;
}
[shader("domain")]
[domain("quad")]
DSOutput domainMain(ConstantsHSOutput input, float2 TessCoord: SV_DomainLocation, const OutputPatch<HSOutput, 4> patch)
{
// Interpolate UV coordinates
DSOutput output;
float2 uv1 = lerp(patch[0].UV, patch[1].UV, TessCoord.x);
float2 uv2 = lerp(patch[3].UV, patch[2].UV, TessCoord.x);
output.UV = lerp(uv1, uv2, TessCoord.y);
float3 n1 = lerp(patch[0].Normal, patch[1].Normal, TessCoord.x);
float3 n2 = lerp(patch[3].Normal, patch[2].Normal, TessCoord.x);
output.Normal = lerp(n1, n2, TessCoord.y);
// Interpolate positions
float4 pos1 = lerp(patch[0].Pos, patch[1].Pos, TessCoord.x);
float4 pos2 = lerp(patch[3].Pos, patch[2].Pos, TessCoord.x);
float4 pos = lerp(pos1, pos2, TessCoord.y);
// Displace
pos.y -= samplerHeight.SampleLevel(output.UV, 0.0).r * ubo.displacementFactor;
// Perspective projection
output.Pos = mul(ubo.projection, mul(ubo.modelview, pos));
// Calculate vectors for lighting based on tessellated position
output.ViewVec = -pos.xyz;
output.LightVec = normalize(ubo.lightPos.xyz + output.ViewVec);
output.WorldPos = pos.xyz;
output.EyePos = mul(ubo.modelview, pos).xyz;
return output;
}
[shader("fragment")]
float4 fragmentMain(DSOutput input)
{
float3 N = normalize(input.Normal);
float3 L = normalize(input.LightVec);
float3 ambient = float3(0.5, 0.5, 0.5);
float3 diffuse = max(dot(N, L), 0.0) * float3(1.0, 1.0, 1.0);
float4 color = float4((ambient + diffuse) * sampleTerrainLayer(input.UV), 1.0);
const float4 fogColor = float4(0.47, 0.5, 0.67, 0.0);
return lerp(color, fogColor, fog(0.25, input.Pos));
}

View file

@ -0,0 +1,46 @@
/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSInput
{
float3 Pos;
float3 Normal;
float2 UV;
};
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct DSOutput
{
float3 Normal;
float2 UV;
};
[[vk::binding(0, 1)]] Sampler2D samplerColorMap;
[shader("vertex")]
VSOutput vertexMain(VSInput input)
{
VSOutput output;
output.Pos = float4(input.Pos.xyz, 1.0);
output.Normal = input.Normal;
output.UV = input.UV;
return output;
}
[shader("fragment")]
float4 fragmentMain(DSOutput input)
{
float3 N = normalize(input.Normal);
float3 L = normalize(float3(0.0, -4.0, 4.0));
float4 color = samplerColorMap.Sample(input.UV);
return float4(clamp(max(dot(N,L), 0.0), 0.2, 1.0) * color.rgb * 1.5, 1);
}

View file

@ -0,0 +1,83 @@
/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct HSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct DSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct ConstantsHSOutput
{
float TessLevelOuter[3] : SV_TessFactor;
float TessLevelInner[2] : SV_InsideTessFactor;
};
struct UBO
{
float4x4 projection;
float4x4 model;
float tessAlpha;
float tessLevel;
};
ConstantBuffer<UBO> ubo;
ConstantsHSOutput ConstantsHS(InputPatch<VSOutput, 3> patch)
{
ConstantsHSOutput output;
output.TessLevelInner[0] = 1;
output.TessLevelInner[1] = 1;
output.TessLevelOuter[0] = 1;
output.TessLevelOuter[1] = 1;
output.TessLevelOuter[2] = 1;
return output;
}
[shader("hull")]
[domain("tri")]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(3)]
[patchconstantfunc("ConstantsHS")]
[maxtessfactor(20.0f)]
HSOutput hullMain(InputPatch<VSOutput, 3> patch, uint InvocationID : SV_OutputControlPointID)
{
HSOutput output;
output.Pos = patch[InvocationID].Pos;
output.Normal = patch[InvocationID].Normal;
output.UV = patch[InvocationID].UV;
return output;
}
[shader("domain")]
[domain("tri")]
DSOutput domainMain(ConstantsHSOutput input, float3 TessCoord: SV_DomainLocation, const OutputPatch<HSOutput, 3> patch)
{
DSOutput output = (DSOutput)0;
output.Pos = (TessCoord.x * patch[0].Pos) +
(TessCoord.y * patch[1].Pos) +
(TessCoord.z * patch[2].Pos);
output.Pos = mul(ubo.projection, mul(ubo.model, output.Pos));
output.Normal = TessCoord.x * patch[0].Normal + TessCoord.y * patch[1].Normal + TessCoord.z * patch[2].Normal;
output.UV = TessCoord.x * patch[0].UV + TessCoord.y * patch[1].UV + TessCoord.z * patch[2].UV;
return output;
}

View file

@ -0,0 +1,216 @@
/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct HSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
float pnPatch[10];
};
struct DSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct ConstantsHSOutput
{
float TessLevelOuter[3] : SV_TessFactor;
float TessLevelInner[2] : SV_InsideTessFactor;
};
struct UBO
{
float4x4 projection;
float4x4 model;
float tessAlpha;
float tessLevel;
};
ConstantBuffer<UBO> ubo;
#define uvw TessCoord
struct PnPatch
{
float b210;
float b120;
float b021;
float b012;
float b102;
float b201;
float b111;
float n110;
float n011;
float n101;
};
PnPatch GetPnPatch(float pnPatch[10])
{
PnPatch output;
output.b210 = pnPatch[0];
output.b120 = pnPatch[1];
output.b021 = pnPatch[2];
output.b012 = pnPatch[3];
output.b102 = pnPatch[4];
output.b201 = pnPatch[5];
output.b111 = pnPatch[6];
output.n110 = pnPatch[7];
output.n011 = pnPatch[8];
output.n101 = pnPatch[9];
return output;
}
void SetPnPatch(out float output[10], PnPatch patch)
{
output[0] = patch.b210;
output[1] = patch.b120;
output[2] = patch.b021;
output[3] = patch.b012;
output[4] = patch.b102;
output[5] = patch.b201;
output[6] = patch.b111;
output[7] = patch.n110;
output[8] = patch.n011;
output[9] = patch.n101;
}
float wij(float4 iPos, float3 iNormal, float4 jPos)
{
return dot(jPos.xyz - iPos.xyz, iNormal);
}
float vij(float4 iPos, float3 iNormal, float4 jPos, float3 jNormal)
{
float3 Pj_minus_Pi = jPos.xyz - iPos.xyz;
float3 Ni_plus_Nj = iNormal + jNormal;
return 2.0 * dot(Pj_minus_Pi, Ni_plus_Nj) / dot(Pj_minus_Pi, Pj_minus_Pi);
}
ConstantsHSOutput ConstantsHS(InputPatch<VSOutput, 3> patch)
{
ConstantsHSOutput output;
output.TessLevelOuter[0] = ubo.tessLevel;
output.TessLevelOuter[1] = ubo.tessLevel;
output.TessLevelOuter[2] = ubo.tessLevel;
output.TessLevelInner[0] = ubo.tessLevel;
output.TessLevelInner[1] = ubo.tessLevel;
return output;
}
[shader("domain")]
[domain("tri")]
DSOutput domainMain(ConstantsHSOutput input, float3 TessCoord: SV_DomainLocation, const OutputPatch<HSOutput, 3> patch)
{
PnPatch pnPatch[3];
pnPatch[0] = GetPnPatch(patch[0].pnPatch);
pnPatch[1] = GetPnPatch(patch[1].pnPatch);
pnPatch[2] = GetPnPatch(patch[2].pnPatch);
DSOutput output = (DSOutput)0;
float3 uvwSquared = uvw * uvw;
float3 uvwCubed = uvwSquared * uvw;
// extract control points
float3 b210 = float3(pnPatch[0].b210, pnPatch[1].b210, pnPatch[2].b210);
float3 b120 = float3(pnPatch[0].b120, pnPatch[1].b120, pnPatch[2].b120);
float3 b021 = float3(pnPatch[0].b021, pnPatch[1].b021, pnPatch[2].b021);
float3 b012 = float3(pnPatch[0].b012, pnPatch[1].b012, pnPatch[2].b012);
float3 b102 = float3(pnPatch[0].b102, pnPatch[1].b102, pnPatch[2].b102);
float3 b201 = float3(pnPatch[0].b201, pnPatch[1].b201, pnPatch[2].b201);
float3 b111 = float3(pnPatch[0].b111, pnPatch[1].b111, pnPatch[2].b111);
// extract control normals
float3 n110 = normalize(float3(pnPatch[0].n110, pnPatch[1].n110, pnPatch[2].n110));
float3 n011 = normalize(float3(pnPatch[0].n011, pnPatch[1].n011, pnPatch[2].n011));
float3 n101 = normalize(float3(pnPatch[0].n101, pnPatch[1].n101, pnPatch[2].n101));
// compute texcoords
output.UV = TessCoord[2] * patch[0].UV + TessCoord[0] * patch[1].UV + TessCoord[1] * patch[2].UV;
// normal
// Barycentric normal
float3 barNormal = TessCoord[2] * patch[0].Normal + TessCoord[0] * patch[1].Normal + TessCoord[1] * patch[2].Normal;
float3 pnNormal = patch[0].Normal * uvwSquared[2] + patch[1].Normal * uvwSquared[0] + patch[2].Normal * uvwSquared[1]
+ n110 * uvw[2] * uvw[0] + n011 * uvw[0] * uvw[1] + n101 * uvw[2] * uvw[1];
output.Normal = ubo.tessAlpha * pnNormal + (1.0 - ubo.tessAlpha) * barNormal;
// compute interpolated pos
float3 barPos = TessCoord[2] * patch[0].Pos.xyz
+ TessCoord[0] * patch[1].Pos.xyz
+ TessCoord[1] * patch[2].Pos.xyz;
// save some computations
uvwSquared *= 3.0;
// compute PN position
float3 pnPos = patch[0].Pos.xyz * uvwCubed[2]
+ patch[1].Pos.xyz * uvwCubed[0]
+ patch[2].Pos.xyz * uvwCubed[1]
+ b210 * uvwSquared[2] * uvw[0]
+ b120 * uvwSquared[0] * uvw[2]
+ b201 * uvwSquared[2] * uvw[1]
+ b021 * uvwSquared[0] * uvw[1]
+ b102 * uvwSquared[1] * uvw[2]
+ b012 * uvwSquared[1] * uvw[0]
+ b111 * 6.0 * uvw[0] * uvw[1] * uvw[2];
// final position and normal
float3 finalPos = (1.0 - ubo.tessAlpha) * barPos + ubo.tessAlpha * pnPos;
output.Pos = mul(ubo.projection, mul(ubo.model, float4(finalPos, 1.0)));
return output;
}
[shader("hull")]
[domain("tri")]
[partitioning("fractional_odd")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(3)]
[patchconstantfunc("ConstantsHS")]
[maxtessfactor(20.0f)]
HSOutput hullMain(InputPatch<VSOutput, 3> patch, uint InvocationID : SV_OutputControlPointID)
{
HSOutput output;
// get data
output.Pos = patch[InvocationID].Pos;
output.Normal = patch[InvocationID].Normal;
output.UV = patch[InvocationID].UV;
// set base
float P0 = patch[0].Pos[InvocationID];
float P1 = patch[1].Pos[InvocationID];
float P2 = patch[2].Pos[InvocationID];
float N0 = patch[0].Normal[InvocationID];
float N1 = patch[1].Normal[InvocationID];
float N2 = patch[2].Normal[InvocationID];
// compute control points
PnPatch pnPatch;
pnPatch.b210 = (2.0*P0 + P1 - wij(patch[0].Pos, patch[0].Normal, patch[1].Pos)*N0)/3.0;
pnPatch.b120 = (2.0*P1 + P0 - wij(patch[1].Pos, patch[1].Normal, patch[0].Pos)*N1)/3.0;
pnPatch.b021 = (2.0*P1 + P2 - wij(patch[1].Pos, patch[1].Normal, patch[2].Pos)*N1)/3.0;
pnPatch.b012 = (2.0*P2 + P1 - wij(patch[2].Pos, patch[2].Normal, patch[1].Pos)*N2)/3.0;
pnPatch.b102 = (2.0*P2 + P0 - wij(patch[2].Pos, patch[2].Normal, patch[0].Pos)*N2)/3.0;
pnPatch.b201 = (2.0*P0 + P2 - wij(patch[0].Pos, patch[0].Normal, patch[2].Pos)*N0)/3.0;
float E = ( pnPatch.b210 + pnPatch.b120 + pnPatch.b021 + pnPatch.b012 + pnPatch.b102 + pnPatch.b201 ) / 6.0;
float V = (P0 + P1 + P2)/3.0;
pnPatch.b111 = E + (E - V)*0.5;
pnPatch.n110 = N0+N1-vij(patch[0].Pos, patch[0].Normal, patch[1].Pos, patch[1].Normal)*(P1-P0);
pnPatch.n011 = N1+N2-vij(patch[1].Pos, patch[1].Normal, patch[2].Pos, patch[2].Normal)*(P2-P1);
pnPatch.n101 = N2+N0-vij(patch[2].Pos, patch[2].Normal, patch[0].Pos, patch[0].Normal)*(P0-P2);
SetPnPatch(output.pnPatch, pnPatch);
return output;
}