Added Vulkan examples sources!
This commit is contained in:
parent
367fda186b
commit
c91341813c
868 changed files with 514080 additions and 5584 deletions
926
skeletalanimation/skeletalanimation.cpp
Normal file
926
skeletalanimation/skeletalanimation.cpp
Normal file
|
|
@ -0,0 +1,926 @@
|
|||
/*
|
||||
* Vulkan Example - Skeletal animation
|
||||
*
|
||||
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
|
||||
#define GLM_FORCE_RADIANS
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
#include <vulkan/vulkan.h>
|
||||
#include "vulkanexamplebase.h"
|
||||
|
||||
#define VERTEX_BUFFER_BIND_ID 0
|
||||
//#define USE_GLSL
|
||||
#define ENABLE_VALIDATION false
|
||||
|
||||
// Vertex layout used in this example
|
||||
struct Vertex {
|
||||
glm::vec3 pos;
|
||||
glm::vec3 normal;
|
||||
glm::vec2 uv;
|
||||
glm::vec3 color;
|
||||
// Max. four bones per vertex
|
||||
float boneWeights[4];
|
||||
uint32_t boneIDs[4];
|
||||
};
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
struct {
|
||||
vkTools::VulkanTexture colorMap;
|
||||
} textures;
|
||||
|
||||
struct {
|
||||
VkPipelineVertexInputStateCreateInfo inputState;
|
||||
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
||||
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
||||
} vertices;
|
||||
|
||||
// Mesh related stuff
|
||||
|
||||
// Maximum number of bones per vertex
|
||||
#define MAX_BONES_PER_VERTEX 4
|
||||
|
||||
// Per-vertex bone IDs and weights
|
||||
struct VertexBoneData
|
||||
{
|
||||
std::array<uint32_t, MAX_BONES_PER_VERTEX> IDs;
|
||||
std::array<float, MAX_BONES_PER_VERTEX> weights;
|
||||
|
||||
// Ad bone weighting to vertex info
|
||||
void add(uint32_t boneID, float weight)
|
||||
{
|
||||
for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++)
|
||||
{
|
||||
if (weights[i] == 0.0f)
|
||||
{
|
||||
IDs[i] = boneID;
|
||||
weights[i] = weight;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Stores information on a single bone
|
||||
struct BoneInfo
|
||||
{
|
||||
aiMatrix4x4 offset;
|
||||
aiMatrix4x4 finalTransformation;
|
||||
|
||||
BoneInfo()
|
||||
{
|
||||
offset = aiMatrix4x4();
|
||||
finalTransformation = aiMatrix4x4();
|
||||
};
|
||||
};
|
||||
|
||||
struct Mesh {
|
||||
// Bone related stuff
|
||||
// Maps bone name with index
|
||||
std::map<std::string, uint32_t> boneMapping;
|
||||
// Bone details
|
||||
std::vector<BoneInfo> boneInfo;
|
||||
// Number of bones present
|
||||
uint32_t numBones = 0;
|
||||
// Root inverese transform matrix
|
||||
aiMatrix4x4 globalInverseTransform;
|
||||
// Per-vertex bone info
|
||||
std::vector<VertexBoneData> bones;
|
||||
|
||||
// Vulkan buffers
|
||||
vkMeshLoader::MeshBuffer meshBuffer;
|
||||
// Reference to assimp mesh
|
||||
// Required for animation
|
||||
VulkanMeshLoader *meshLoader;
|
||||
} mesh;
|
||||
|
||||
struct {
|
||||
vkTools::UniformData vsScene;
|
||||
} uniformData;
|
||||
|
||||
// Must not be higher than same const in skinning shader
|
||||
#define MAX_BONES 128
|
||||
|
||||
struct {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 model;
|
||||
glm::mat4 bones[MAX_BONES];
|
||||
glm::vec4 lightPos = glm::vec4(0.0, -5.0, 25.0, 1.0);
|
||||
} uboVS;
|
||||
|
||||
struct {
|
||||
VkPipeline solid;
|
||||
} pipelines;
|
||||
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkDescriptorSet descriptorSet;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
float runningTime = 0.0f;
|
||||
|
||||
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
||||
{
|
||||
width = 1280;
|
||||
height = 720;
|
||||
zoom = -8.0f;
|
||||
zoomSpeed = 2.5f;
|
||||
rotationSpeed = 0.5f;
|
||||
rotation = { -180.0f, -50.0f, 180.0f };
|
||||
title = "Vulkan Example - Skeletal animation";
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
// Clean up used Vulkan resources
|
||||
// Note : Inherited destructor cleans up resources stored in base class
|
||||
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
||||
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
|
||||
// Destroy and free mesh resources
|
||||
vkMeshLoader::freeMeshBufferResources(device, &mesh.meshBuffer);
|
||||
|
||||
textureLoader->destroyTexture(textures.colorMap);
|
||||
|
||||
vkTools::destroyUniformData(device, &uniformData.vsScene);
|
||||
|
||||
delete(mesh.meshLoader);
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = defaultClearColor;
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
VkResult err;
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
// Set target frame buffer
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
|
||||
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
|
||||
assert(!err);
|
||||
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
VkViewport viewport = vkTools::initializers::viewport(
|
||||
(float)width,
|
||||
(float)height,
|
||||
0.0f,
|
||||
1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vkTools::initializers::rect2D(
|
||||
width,
|
||||
height,
|
||||
0,
|
||||
0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
// Bind mesh vertex buffer
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &mesh.meshBuffer.vertices.buf, offsets);
|
||||
// Bind mesh index buffer
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], mesh.meshBuffer.indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
||||
// Render mesh vertex buffer using it's indices
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], mesh.meshBuffer.indexCount, 1, 0, 0, 0);
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
|
||||
vkCmdPipelineBarrier(
|
||||
drawCmdBuffers[i],
|
||||
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
||||
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
||||
VK_FLAGS_NONE,
|
||||
0, nullptr,
|
||||
0, nullptr,
|
||||
1, &prePresentBarrier);
|
||||
|
||||
err = vkEndCommandBuffer(drawCmdBuffers[i]);
|
||||
assert(!err);
|
||||
}
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VkResult err;
|
||||
VkSemaphore presentCompleteSemaphore;
|
||||
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo =
|
||||
vkTools::initializers::semaphoreCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
|
||||
|
||||
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
|
||||
assert(!err);
|
||||
|
||||
// Get next image in the swap chain (back/front buffer)
|
||||
err = swapChain.acquireNextImage(presentCompleteSemaphore, ¤tBuffer);
|
||||
assert(!err);
|
||||
|
||||
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
|
||||
submitInfo.waitSemaphoreCount = 1;
|
||||
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
|
||||
// Submit draw command buffer
|
||||
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
||||
assert(!err);
|
||||
|
||||
err = swapChain.queuePresent(queue, currentBuffer);
|
||||
assert(!err);
|
||||
|
||||
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
|
||||
|
||||
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
|
||||
|
||||
err = vkQueueWaitIdle(queue);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
// todo : comment
|
||||
void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector<VertexBoneData>& Bones)
|
||||
{
|
||||
for (uint32_t i = 0; i < pMesh->mNumBones; i++)
|
||||
{
|
||||
uint32_t index = 0;
|
||||
std::string name(pMesh->mBones[i]->mName.data);
|
||||
|
||||
if (mesh.boneMapping.find(name) == mesh.boneMapping.end())
|
||||
{
|
||||
// Bone not present, add new one
|
||||
index = mesh.numBones;
|
||||
mesh.numBones++;
|
||||
BoneInfo bone;
|
||||
mesh.boneInfo.push_back(bone);
|
||||
mesh.boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix;
|
||||
mesh.boneMapping[name] = index;
|
||||
}
|
||||
else
|
||||
{
|
||||
index = mesh.boneMapping[name];
|
||||
}
|
||||
|
||||
for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++)
|
||||
{
|
||||
uint32_t vertexID = mesh.meshLoader->m_Entries[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId;
|
||||
Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find animation for a given node
|
||||
const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName)
|
||||
{
|
||||
for (uint32_t i = 0; i < animation->mNumChannels; i++)
|
||||
{
|
||||
const aiNodeAnim* nodeAnim = animation->mChannels[i];
|
||||
if (std::string(nodeAnim->mNodeName.data) == nodeName)
|
||||
{
|
||||
return nodeAnim;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Returns a 4x4 matrix with interpolated translation between current and next frame
|
||||
aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim)
|
||||
{
|
||||
aiVector3D translation;
|
||||
|
||||
if (pNodeAnim->mNumPositionKeys == 1)
|
||||
{
|
||||
translation = pNodeAnim->mPositionKeys[0].mValue;
|
||||
}
|
||||
else
|
||||
{
|
||||
uint32_t frameIndex = 0;
|
||||
for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++)
|
||||
{
|
||||
if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime)
|
||||
{
|
||||
frameIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex];
|
||||
aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys];
|
||||
|
||||
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
|
||||
|
||||
const aiVector3D& start = currentFrame.mValue;
|
||||
const aiVector3D& end = nextFrame.mValue;
|
||||
|
||||
translation = (start + delta * (end - start));
|
||||
}
|
||||
|
||||
aiMatrix4x4 mat;
|
||||
aiMatrix4x4::Translation(translation, mat);
|
||||
return mat;
|
||||
}
|
||||
|
||||
// Returns a 4x4 matrix with interpolated rotation between current and next frame
|
||||
aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim)
|
||||
{
|
||||
aiQuaternion rotation;
|
||||
|
||||
if (pNodeAnim->mNumRotationKeys == 1)
|
||||
{
|
||||
rotation = pNodeAnim->mRotationKeys[0].mValue;
|
||||
}
|
||||
else
|
||||
{
|
||||
uint32_t frameIndex = 0;
|
||||
for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++)
|
||||
{
|
||||
if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime)
|
||||
{
|
||||
frameIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex];
|
||||
aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys];
|
||||
|
||||
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
|
||||
|
||||
const aiQuaternion& start = currentFrame.mValue;
|
||||
const aiQuaternion& end = nextFrame.mValue;
|
||||
|
||||
aiQuaternion::Interpolate(rotation, start, end, delta);
|
||||
rotation.Normalize();
|
||||
}
|
||||
|
||||
aiMatrix4x4 mat(rotation.GetMatrix());
|
||||
return mat;
|
||||
}
|
||||
|
||||
|
||||
// Returns a 4x4 matrix with interpolated scaling between current and next frame
|
||||
aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim)
|
||||
{
|
||||
aiVector3D scale;
|
||||
|
||||
if (pNodeAnim->mNumScalingKeys == 1)
|
||||
{
|
||||
scale = pNodeAnim->mScalingKeys[0].mValue;
|
||||
}
|
||||
else
|
||||
{
|
||||
uint32_t frameIndex = 0;
|
||||
for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++)
|
||||
{
|
||||
if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime)
|
||||
{
|
||||
frameIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex];
|
||||
aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys];
|
||||
|
||||
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
|
||||
|
||||
const aiVector3D& start = currentFrame.mValue;
|
||||
const aiVector3D& end = nextFrame.mValue;
|
||||
|
||||
scale = (start + delta * (end - start));
|
||||
}
|
||||
|
||||
aiMatrix4x4 mat;
|
||||
aiMatrix4x4::Scaling(scale, mat);
|
||||
return mat;
|
||||
}
|
||||
|
||||
// Get node hierarchy for current animation time
|
||||
void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform)
|
||||
{
|
||||
std::string NodeName(pNode->mName.data);
|
||||
|
||||
const aiAnimation* pAnimation = mesh.meshLoader->pScene->mAnimations[0];
|
||||
|
||||
aiMatrix4x4 NodeTransformation(pNode->mTransformation);
|
||||
|
||||
const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName);
|
||||
|
||||
if (pNodeAnim)
|
||||
{
|
||||
// Get interpolated matrices between current and next frame
|
||||
aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim);
|
||||
aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim);
|
||||
aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim);
|
||||
|
||||
NodeTransformation = matTranslation * matRotation;// *matScale;
|
||||
}
|
||||
|
||||
aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation;
|
||||
|
||||
if (mesh.boneMapping.find(NodeName) != mesh.boneMapping.end())
|
||||
{
|
||||
uint32_t BoneIndex = mesh.boneMapping[NodeName];
|
||||
mesh.boneInfo[BoneIndex].finalTransformation = mesh.globalInverseTransform * GlobalTransformation * mesh.boneInfo[BoneIndex].offset;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < pNode->mNumChildren; i++)
|
||||
{
|
||||
readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation);
|
||||
}
|
||||
}
|
||||
|
||||
// Recursive bone transformation
|
||||
// Results are stored in the Transforms vector
|
||||
void boneTransform(float time, std::vector<aiMatrix4x4>& boneTransforms)
|
||||
{
|
||||
float TicksPerSecond = (float)(mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond != 0 ? mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond : 25.0f);
|
||||
float TimeInTicks = time * TicksPerSecond;
|
||||
float AnimationTime = fmod(TimeInTicks, (float)mesh.meshLoader->pScene->mAnimations[0]->mDuration);
|
||||
|
||||
aiMatrix4x4 identity = aiMatrix4x4();
|
||||
readNodeHierarchy(AnimationTime, mesh.meshLoader->pScene->mRootNode, identity);
|
||||
|
||||
boneTransforms.resize(mesh.numBones);
|
||||
|
||||
for (uint32_t i = 0; i < boneTransforms.size(); i++)
|
||||
{
|
||||
boneTransforms[i] = mesh.boneInfo[i].finalTransformation;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Load a mesh based on data read via assimp
|
||||
// The other example will use the VulkanMesh loader which has some additional functionality for loading meshes
|
||||
void loadMesh()
|
||||
{
|
||||
mesh.meshLoader = new VulkanMeshLoader();
|
||||
mesh.meshLoader->LoadMesh("./../data/models/astroboy/astroBoy_walk.dae", 0);
|
||||
|
||||
// Setup bones
|
||||
// One vertex bone info structure per vertex
|
||||
mesh.bones.resize(mesh.meshLoader->numVertices);
|
||||
// Store global inverse transform matrix of root node
|
||||
mesh.globalInverseTransform = mesh.meshLoader->pScene->mRootNode->mTransformation;
|
||||
mesh.globalInverseTransform.Inverse();
|
||||
// Load bones (weights and IDs)
|
||||
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
|
||||
{
|
||||
aiMesh *paiMesh = mesh.meshLoader->pScene->mMeshes[m];
|
||||
if (paiMesh->mNumBones > 0)
|
||||
{
|
||||
loadBones(m, paiMesh, mesh.bones);
|
||||
}
|
||||
}
|
||||
|
||||
// Generate vertex buffer
|
||||
float scale = 1.0f;
|
||||
std::vector<Vertex> vertexBuffer;
|
||||
// Iterate through all meshes in the file
|
||||
// and extract the vertex information used in this demo
|
||||
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
|
||||
{
|
||||
for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Vertices.size(); i++)
|
||||
{
|
||||
Vertex vertex;
|
||||
|
||||
vertex.pos = mesh.meshLoader->m_Entries[m].Vertices[i].m_pos * scale;
|
||||
vertex.pos.y = -vertex.pos.y;
|
||||
vertex.normal = mesh.meshLoader->m_Entries[m].Vertices[i].m_normal;
|
||||
vertex.uv = mesh.meshLoader->m_Entries[m].Vertices[i].m_tex;
|
||||
vertex.color = mesh.meshLoader->m_Entries[m].Vertices[i].m_color;
|
||||
|
||||
// Fetch bone weights and IDs
|
||||
for (uint32_t j = 0; j < 4; j++)
|
||||
{
|
||||
vertex.boneWeights[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].weights[j];
|
||||
vertex.boneIDs[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].IDs[j];
|
||||
}
|
||||
|
||||
vertexBuffer.push_back(vertex);
|
||||
}
|
||||
}
|
||||
uint32_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
|
||||
|
||||
// Generate index buffer from loaded mesh file
|
||||
std::vector<uint32_t> indexBuffer;
|
||||
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
|
||||
{
|
||||
uint32_t indexBase = indexBuffer.size();
|
||||
for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Indices.size(); i++)
|
||||
{
|
||||
indexBuffer.push_back(mesh.meshLoader->m_Entries[m].Indices[i] + indexBase);
|
||||
}
|
||||
}
|
||||
uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
||||
mesh.meshBuffer.indexCount = indexBuffer.size();
|
||||
|
||||
// Generate vertex buffer
|
||||
createBuffer(
|
||||
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
||||
vertexBufferSize,
|
||||
vertexBuffer.data(),
|
||||
&mesh.meshBuffer.vertices.buf,
|
||||
&mesh.meshBuffer.vertices.mem);
|
||||
|
||||
// Generate index buffer
|
||||
createBuffer(
|
||||
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
||||
indexBufferSize,
|
||||
indexBuffer.data(),
|
||||
&mesh.meshBuffer.indices.buf,
|
||||
&mesh.meshBuffer.indices.mem);
|
||||
}
|
||||
|
||||
void loadTextures()
|
||||
{
|
||||
textureLoader->loadTexture(
|
||||
"./../data/models/astroboy/astroboy.ktx",
|
||||
VK_FORMAT_BC3_UNORM_BLOCK,
|
||||
&textures.colorMap);
|
||||
}
|
||||
|
||||
void setupVertexDescriptions()
|
||||
{
|
||||
// Binding description
|
||||
vertices.bindingDescriptions.resize(1);
|
||||
vertices.bindingDescriptions[0] =
|
||||
vkTools::initializers::vertexInputBindingDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
sizeof(Vertex),
|
||||
VK_VERTEX_INPUT_RATE_VERTEX);
|
||||
|
||||
// Attribute descriptions
|
||||
// Describes memory layout and shader positions
|
||||
vertices.attributeDescriptions.resize(6);
|
||||
// Location 0 : Position
|
||||
vertices.attributeDescriptions[0] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
0,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
0);
|
||||
// Location 1 : Normal
|
||||
vertices.attributeDescriptions[1] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
1,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
sizeof(float) * 3);
|
||||
// Location 2 : Texture coordinates
|
||||
vertices.attributeDescriptions[2] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
2,
|
||||
VK_FORMAT_R32G32_SFLOAT,
|
||||
sizeof(float) * 6);
|
||||
// Location 3 : Color
|
||||
vertices.attributeDescriptions[3] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
3,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
sizeof(float) * 8);
|
||||
// Location 4 : Bone weights
|
||||
vertices.attributeDescriptions[4] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
4,
|
||||
VK_FORMAT_R32G32B32A32_SFLOAT,
|
||||
sizeof(float) * 11);
|
||||
// Location 5 : Bone IDs
|
||||
vertices.attributeDescriptions[5] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
5,
|
||||
VK_FORMAT_R32G32B32A32_SINT,
|
||||
sizeof(float) * 15);
|
||||
|
||||
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
||||
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
||||
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
||||
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
||||
}
|
||||
|
||||
void setupDescriptorPool()
|
||||
{
|
||||
// Example uses one ubo and one combined image sampler
|
||||
std::vector<VkDescriptorPoolSize> poolSizes =
|
||||
{
|
||||
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
||||
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
|
||||
};
|
||||
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
||||
vkTools::initializers::descriptorPoolCreateInfo(
|
||||
poolSizes.size(),
|
||||
poolSizes.data(),
|
||||
2);
|
||||
|
||||
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
|
||||
assert(!vkRes);
|
||||
}
|
||||
|
||||
void setupDescriptorSetLayout()
|
||||
{
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
||||
{
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vkTools::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
VK_SHADER_STAGE_VERTEX_BIT,
|
||||
0),
|
||||
// Binding 1 : Fragment shader combined sampler
|
||||
vkTools::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
||||
VK_SHADER_STAGE_FRAGMENT_BIT,
|
||||
1),
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
||||
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
||||
setLayoutBindings.data(),
|
||||
setLayoutBindings.size());
|
||||
|
||||
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
|
||||
assert(!err);
|
||||
|
||||
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
||||
vkTools::initializers::pipelineLayoutCreateInfo(
|
||||
&descriptorSetLayout,
|
||||
1);
|
||||
|
||||
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
void setupDescriptorSet()
|
||||
{
|
||||
VkDescriptorSetAllocateInfo allocInfo =
|
||||
vkTools::initializers::descriptorSetAllocateInfo(
|
||||
descriptorPool,
|
||||
&descriptorSetLayout,
|
||||
1);
|
||||
|
||||
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
|
||||
assert(!vkRes);
|
||||
|
||||
VkDescriptorImageInfo texDescriptor =
|
||||
vkTools::initializers::descriptorImageInfo(
|
||||
textures.colorMap.sampler,
|
||||
textures.colorMap.view,
|
||||
VK_IMAGE_LAYOUT_GENERAL);
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
||||
{
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vkTools::initializers::writeDescriptorSet(
|
||||
descriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
0,
|
||||
&uniformData.vsScene.descriptor),
|
||||
// Binding 1 : Color map
|
||||
vkTools::initializers::writeDescriptorSet(
|
||||
descriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
||||
1,
|
||||
&texDescriptor)
|
||||
};
|
||||
|
||||
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
||||
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
|
||||
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
||||
0,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
||||
vkTools::initializers::pipelineRasterizationStateCreateInfo(
|
||||
VK_POLYGON_MODE_FILL,
|
||||
VK_CULL_MODE_BACK_BIT,
|
||||
VK_FRONT_FACE_CLOCKWISE,
|
||||
0);
|
||||
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
||||
vkTools::initializers::pipelineColorBlendAttachmentState(
|
||||
0xf,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
||||
vkTools::initializers::pipelineColorBlendStateCreateInfo(
|
||||
1,
|
||||
&blendAttachmentState);
|
||||
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
||||
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
|
||||
VK_TRUE,
|
||||
VK_TRUE,
|
||||
VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
|
||||
VkPipelineViewportStateCreateInfo viewportState =
|
||||
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState =
|
||||
vkTools::initializers::pipelineMultisampleStateCreateInfo(
|
||||
VK_SAMPLE_COUNT_1_BIT,
|
||||
0);
|
||||
|
||||
std::vector<VkDynamicState> dynamicStateEnables = {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR
|
||||
};
|
||||
VkPipelineDynamicStateCreateInfo dynamicState =
|
||||
vkTools::initializers::pipelineDynamicStateCreateInfo(
|
||||
dynamicStateEnables.data(),
|
||||
dynamicStateEnables.size(),
|
||||
0);
|
||||
|
||||
// Solid rendering pipeline
|
||||
// Load shaders
|
||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
||||
|
||||
#ifdef USE_GLSL
|
||||
shaderStages[0] = loadShaderGLSL("./../data/shaders/skeletalanimation/mesh.vert", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShaderGLSL("./../data/shaders/skeletalanimation/mesh.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
#else
|
||||
shaderStages[0] = loadShader("./../data/shaders/skeletalanimation/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader("./../data/shaders/skeletalanimation/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
#endif
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
||||
vkTools::initializers::pipelineCreateInfo(
|
||||
pipelineLayout,
|
||||
renderPass,
|
||||
0);
|
||||
|
||||
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
||||
pipelineCreateInfo.pViewportState = &viewportState;
|
||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
||||
pipelineCreateInfo.stageCount = shaderStages.size();
|
||||
pipelineCreateInfo.pStages = shaderStages.data();
|
||||
|
||||
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
// Prepare and initialize uniform buffer containing shader uniforms
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
// Vertex shader uniform buffer block
|
||||
createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
sizeof(uboVS),
|
||||
&uboVS,
|
||||
&uniformData.vsScene.buffer,
|
||||
&uniformData.vsScene.memory,
|
||||
&uniformData.vsScene.descriptor);
|
||||
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
// Vertex shader
|
||||
uboVS.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.1f, 256.0f);
|
||||
|
||||
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
|
||||
viewMatrix = glm::rotate(viewMatrix, deg_to_rad(90), glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
|
||||
uboVS.model = glm::mat4();
|
||||
uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0.0f, 0.0f, -3.5f));
|
||||
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(-rotation.y), glm::vec3(0.0f, 0.0f, 1.0f));
|
||||
|
||||
// Update bones
|
||||
std::vector<aiMatrix4x4> boneTransforms;
|
||||
boneTransform(runningTime, boneTransforms);
|
||||
|
||||
for (uint32_t i = 0; i < boneTransforms.size(); i++)
|
||||
{
|
||||
uboVS.bones[i] = glm::transpose(glm::make_mat4(&boneTransforms[i].a1));
|
||||
}
|
||||
|
||||
uint8_t *pData;
|
||||
VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData);
|
||||
assert(!err);
|
||||
memcpy(pData, &uboVS, sizeof(uboVS));
|
||||
vkUnmapMemory(device, uniformData.vsScene.memory);
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
loadTextures();
|
||||
loadMesh();
|
||||
setupVertexDescriptions();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptorSetLayout();
|
||||
preparePipelines();
|
||||
setupDescriptorPool();
|
||||
setupDescriptorSet();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
vkDeviceWaitIdle(device);
|
||||
draw();
|
||||
vkDeviceWaitIdle(device);
|
||||
if (!paused)
|
||||
{
|
||||
runningTime += frameTimer * 0.75f;
|
||||
updateUniformBuffers();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void viewChanged()
|
||||
{
|
||||
updateUniformBuffers();
|
||||
}
|
||||
};
|
||||
|
||||
VulkanExample *vulkanExample;
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
||||
{
|
||||
if (vulkanExample != NULL)
|
||||
{
|
||||
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
|
||||
}
|
||||
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static void handleEvent(const xcb_generic_event_t *event)
|
||||
{
|
||||
if (vulkanExample != NULL)
|
||||
{
|
||||
vulkanExample->handleEvent(event);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
|
||||
#else
|
||||
int main(const int argc, const char *argv[])
|
||||
#endif
|
||||
{
|
||||
vulkanExample = new VulkanExample();
|
||||
#ifdef _WIN32
|
||||
vulkanExample->setupWindow(hInstance, WndProc);
|
||||
#else
|
||||
vulkanExample->setupWindow();
|
||||
#endif
|
||||
vulkanExample->initSwapchain();
|
||||
vulkanExample->prepare();
|
||||
vulkanExample->renderLoop();
|
||||
delete(vulkanExample);
|
||||
return 0;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue