Add shaders re-implemented in HLSL

These were written against the shaders at revision eddd724e7.
There have been changes made since then, which will need to be mirrored.

See `data/hlsl/README.md` for the current status of each sample.
This commit is contained in:
Ben Clayton 2020-05-21 10:20:19 +00:00
parent 10a1ecaf7b
commit cce75f1859
287 changed files with 11263 additions and 0 deletions

View file

@ -0,0 +1,53 @@
// Copyright 2020 Google LLC
Texture2DMS<float4> texturePosition : register(t1);
SamplerState samplerPosition : register(s1);
Texture2DMS<float4> textureNormal : register(t2);
SamplerState samplerNormal : register(s2);
Texture2DMS<float4> textureAlbedo : register(t3);
SamplerState samplerAlbedo : register(s3);
[[vk::constant_id(0)]] const int NUM_SAMPLES = 8;
float4 resolve(Texture2DMS<float4> tex, int2 uv)
{
float4 result = float4(0.0, 0.0, 0.0, 0.0);
int count = 0;
for (int i = 0; i < NUM_SAMPLES; i++)
{
uint status = 0;
float4 val = tex.Load(uv, i, int2(0, 0), status);
result += val;
count++;
}
return result / float(NUM_SAMPLES);
}
float4 main([[vk::location(0)]] float3 inUV : TEXCOORD0) : SV_TARGET
{
int2 attDim; int sampleCount;
texturePosition.GetDimensions(attDim.x, attDim.y, sampleCount);
int2 UV = int2(inUV.xy * attDim * 2.0);
int index = 0;
if (inUV.x > 0.5)
{
index = 1;
UV.x -= attDim.x;
}
if (inUV.y > 0.5)
{
index = 2;
UV.y -= attDim.y;
}
float3 components[3];
components[0] = resolve(texturePosition, UV).rgb;
components[1] = resolve(textureNormal, UV).rgb;
components[2] = resolve(textureAlbedo, UV).rgb;
// Uncomment to display specular component
//components[2] = float3(textureAlbedo.Sample(samplerAlbedo, inUV.xt).a);
// Select component depending on UV
return float4(components[index], 1);
}

View file

@ -0,0 +1,23 @@
// Copyright 2020 Google LLC
struct UBO
{
float4x4 projection;
float4x4 model;
};
cbuffer ubo : register(b0) { UBO ubo; }
struct VSOutput
{
float4 Pos : SV_POSITION;
[[vk::location(0)]] float3 UV : TEXCOORD0;
};
VSOutput main(uint VertexIndex : SV_VertexID)
{
VSOutput output = (VSOutput)0;
output.UV = float3((VertexIndex << 1) & 2, VertexIndex & 2, 0.0);
output.Pos = float4(output.UV.xy * 2.0f - 1.0f, 0.0f, 1.0f);
return output;
}

View file

@ -0,0 +1,104 @@
// Copyright 2020 Google LLC
Texture2DMS<float4> texturePosition : register(t1);
SamplerState samplerPosition : register(s1);
Texture2DMS<float4> textureNormal : register(t2);
SamplerState samplerNormal : register(s2);
Texture2DMS<float4> textureAlbedo : register(t3);
SamplerState samplerAlbedo : register(s3);
struct Light {
float4 position;
float3 color;
float radius;
};
struct UBO
{
Light lights[6];
float4 viewPos;
int2 windowSize;
};
cbuffer ubo : register(b4) { UBO ubo; }
[[vk::constant_id(0)]] const int NUM_SAMPLES = 8;
#define NUM_LIGHTS 6
// Manual resolve for MSAA samples
float4 resolve(Texture2DMS<float4> tex, int2 uv)
{
float4 result = float4(0.0, 0.0, 0.0, 0.0);
for (int i = 0; i < NUM_SAMPLES; i++)
{
uint status = 0;
float4 val = tex.Load(uv, i, int2(0, 0), status);
result += val;
}
// Average resolved samples
return result / float(NUM_SAMPLES);
}
float3 calculateLighting(float3 pos, float3 normal, float4 albedo)
{
float3 result = float3(0.0, 0.0, 0.0);
for(int i = 0; i < NUM_LIGHTS; ++i)
{
// Vector to light
float3 L = ubo.lights[i].position.xyz - pos;
// Distance from light to fragment position
float dist = length(L);
// Viewer to fragment
float3 V = ubo.viewPos.xyz - pos;
V = normalize(V);
// Light to fragment
L = normalize(L);
// Attenuation
float atten = ubo.lights[i].radius / (pow(dist, 2.0) + 1.0);
// Diffuse part
float3 N = normalize(normal);
float NdotL = max(0.0, dot(N, L));
float3 diff = ubo.lights[i].color * albedo.rgb * NdotL * atten;
// Specular part
float3 R = reflect(-L, N);
float NdotR = max(0.0, dot(R, V));
float3 spec = ubo.lights[i].color * albedo.a * pow(NdotR, 8.0) * atten;
result += diff + spec;
}
return result;
}
float4 main([[vk::location(0)]] float2 inUV : TEXCOORD0) : SV_TARGET
{
int2 attDim; int sampleCount;
texturePosition.GetDimensions(attDim.x, attDim.y, sampleCount);
int2 UV = int2(inUV * attDim);
#define ambient 0.15
// Ambient part
float4 alb = resolve(textureAlbedo, UV);
float3 fragColor = float3(0.0, 0.0, 0.0);
// Calualte lighting for every MSAA sample
for (int i = 0; i < NUM_SAMPLES; i++)
{
uint status = 0;
float3 pos = texturePosition.Load(UV, i, int2(0, 0), status).rgb;
float3 normal = textureNormal.Load(UV, i, int2(0, 0), status).rgb;
float4 albedo = textureAlbedo.Load(UV, i, int2(0, 0), status);
fragColor += calculateLighting(pos, normal, albedo);
}
fragColor = (alb.rgb * ambient) + fragColor / float(NUM_SAMPLES);
return float4(fragColor, 1.0);
}

View file

@ -0,0 +1,23 @@
// Copyright 2020 Google LLC
struct UBO
{
float4x4 projection;
float4x4 model;
};
cbuffer ubo : register(b0) { UBO ubo; }
struct VSOutput
{
float4 Pos : SV_POSITION;
[[vk::location(0)]] float2 UV : TEXCOORD0;
};
VSOutput main(uint VertexIndex : SV_VertexID)
{
VSOutput output = (VSOutput)0;
output.UV = float2((VertexIndex << 1) & 2, VertexIndex & 2);
output.Pos = float4(output.UV * 2.0f - 1.0f, 0.0f, 1.0f);
return output;
}

View file

@ -0,0 +1,40 @@
// Copyright 2020 Google LLC
Texture2D textureColor : register(t1);
SamplerState samplerColor : register(s1);
Texture2D textureNormalMap : register(t2);
SamplerState samplerNormalMap : register(s2);
struct VSOutput
{
[[vk::location(0)]] float3 Normal : NORMAL0;
[[vk::location(1)]] float2 UV : TEXCOORD0;
[[vk::location(2)]] float3 Color : COLOR0;
[[vk::location(3)]] float3 WorldPos : POSITION0;
[[vk::location(4)]] float3 Tangent : TEXCOORD1;
};
struct FSOutput
{
float4 Position : SV_TARGET0;
float4 Normal : SV_TARGET1;
float4 Albedo : SV_TARGET2;
};
FSOutput main(VSOutput input)
{
FSOutput output = (FSOutput)0;
output.Position = float4(input.WorldPos, 1.0);
// Calculate normal in tangent space
float3 N = normalize(input.Normal);
N.y = -N.y;
float3 T = normalize(input.Tangent);
float3 B = cross(N, T);
float3x3 TBN = float3x3(T, B, N);
float3 tnorm = mul(normalize(textureNormalMap.Sample(samplerNormalMap, input.UV).xyz * 2.0 - float3(1.0, 1.0, 1.0)), TBN);
output.Normal = float4(tnorm, 1.0);
output.Albedo = textureColor.Sample(samplerColor, input.UV);
return output;
}

View file

@ -0,0 +1,54 @@
// Copyright 2020 Google LLC
struct VSInput
{
[[vk::location(0)]] float4 Pos : POSITION0;
[[vk::location(1)]] float2 UV : TEXCOORD0;
[[vk::location(2)]] float3 Color : COLOR0;
[[vk::location(3)]] float3 Normal : NORMAL0;
[[vk::location(4)]] float3 Tangent : TEXCOORD1;
};
struct UBO
{
float4x4 projection;
float4x4 model;
float4x4 view;
float4 instancePos[3];
};
cbuffer ubo : register(b0) { UBO ubo; }
struct VSOutput
{
float4 Pos : SV_POSITION;
[[vk::location(0)]] float3 Normal : NORMAL0;
[[vk::location(1)]] float2 UV : TEXCOORD0;
[[vk::location(2)]] float3 Color : COLOR0;
[[vk::location(3)]] float3 WorldPos : POSITION0;
[[vk::location(4)]] float3 Tangent : TEXCOORD1;
};
VSOutput main(VSInput input, uint InstanceIndex : SV_InstanceID)
{
VSOutput output = (VSOutput)0;
float4 tmpPos = input.Pos + ubo.instancePos[InstanceIndex];
output.Pos = mul(ubo.projection, mul(ubo.view, mul(ubo.model, tmpPos)));
output.UV = input.UV;
output.UV.y = 1.0 - output.UV.y;
// Vertex position in world space
output.WorldPos = mul(ubo.model, tmpPos).xyz;
// GL to Vulkan coord space
output.WorldPos.y = -output.WorldPos.y;
// Normal in world space
output.Normal = normalize(input.Normal);
output.Tangent = normalize(input.Tangent);
// Currently just vertex color
output.Color = input.Color;
return output;
}